21. Физический маятник
Физический маятник — это твердое тело, совершающее под действием силы тяжести колебания вокруг неподвижной горизонтальной оси подвеса, не проходящей через центр масс тела (рис.201).
Если маятник отклонен из положения равновесия на некоторый угол а, то в соответствии с уравнением динамики вращательного движения твердого тела (18.3) момент М возвращающей силы можно записать в виде
где У — момент инерции маятника относительно оси, проходящей через точку О, l — расстояние между точкой подвеса и центром масс маятника, Fτ=-mgsinα≈mgα — возвращающая сила (знак минус обусловлен тем, что направления Fτ и α всегда противоположны; sinα≈α соответствует малым колебаниям маятника, т. е. малым отклонениям маятника из положения равновесия).
Уравнение (142.4) можно записать в виде
Принимая
ω0=√mgl/J. (142.5) получим уравнение
идентичное с (142.1), решение которого (140.1) известно:
α=α0cos(ω0t+φ). (142.6)
Из выражения (142.6) следует, что при малых колебаниях физический маятник совершает гармонические колебания с циклической частотой ω0 (см (142.5)) и периодом
Т = 2π/ω0=2π√J/(mgl)=2π√L/g.
(142.7)
где L = J/(ml) — приведенная длина физического маятника.
Точка О’ на продолжении прямой ОС, отстоящая от оси подвеса на расстоянии приведенной длины L, называется центром качаний физического маятника (рис. 201). Применяя теорему Штейнера (16.1), получим
т. е. ОО’ всегда больше ОС. Точка подвеса О и центр качаний О’ обладают свойством взаимозаменяемости: если ось подвеса перенести в центр качаний, то точка О прежней оси подвеса станет новым центром качаний и период колебаний физического маятника не изменится.
22. Сложение гармонических колебаний одного направления и одинаковой частоты. Колеблющееся тело может участвовать в нескольких колебательных процессах, тогда необходимо найти результирующее колебание, иными словами, колебания необходимо сложить. Сложим гармонические колебания одного направления и одинаковой частоты
воспользовавшись методом вращающегося вектора амплитуды (см. § 140). Построим векторные диаграммы этих колебаний (рис.203). Так как векторы a1 и А2 вращаются с одинаковой угловой скоростью ω0, то разность фаз (φ2-φ1) между ними остается постоянной.
Очевидно, что уравнение результирую-
226
щего колебания будет
х=х1+х2=Аcos(ω0t+φ). (144.1)
В выражении (144.1) амплитуда А и начальная фаза φ соответственно задаются соотношениями
Таким образом, тело, участвуя в двух гармонических колебаниях одного направления и одинаковой частоты, совершает также гармоническое колебание в том же направлении и с той же частотой, что и складываемые колебания. Амплитуда результирующего колебания зависит от разности фаз (φ2-φ1) складываемых колебаний.
Проанализируем выражение (144.2) в зависимости от разности фаз (φ2-φ1):
1) φ2-φ1=±2mπ (m = 0, 1, 2,…), тогда A=A1+A2, т.е. амплитуда результирующего колебания А равна сумме амплитуд складываемых колебаний;
2) φ2-φ1= ±(2m+1)π (m=0, 1, 2,…), тогда A = │A1-A2│, т.е. амплитуда результирующего колебания равна разности амплитуд складываемых колебаний.
23.Биения (Продолжение 22)
Для практики особый интерес представляет случай, когда два складываемых гармонических колебания одинакового направления мало отличаются по частоте. В результате сложения этих колебаний получаются колебания с периодически изменяющейся амплитудой. Периодические изменения амплитуды колебания, возникающие при сложении двух гармонических колебаний с близкими частотами, называются биениями.
Пусть амплитуды складываемых колебаний равны А, а частоты равны ω и ω+Δω, причем Δω<<ω. Начало отсчета выберем так, чтобы начальные фазы обоих колебаний были равны нулю:
Складывая эти выражения и учитывая, что во втором сомножителе Δω/2<<ω, найдем
Получившееся выражение есть произведение двух колебаний. Так как Δω<<ω, то сомножитель, стоящий в скобках, почти не изменяется, когда сомножитель cosωt совершит несколько полных колебаний. Поэтому результирующее колебание х можно рассматривать как гармоническое
227
с частотой ω, амплитуда Аб, которого изменяется по следующему периодическому закону:
Частота изменения Aб, в два раза больше частоты изменения косинуса (так как берется по модулю), т.е. частота биений равна разности частот складываемых колебаний: ωб=Δω. Период биений
Tб=2π/Δω.
Характер зависимости (144.3) показан на рис. 204, где сплошные жирные линии дают график результирующего колебания (144.3), а огибающие их — график медленно меняющейся по уравнению (144.4) амплитуды.
Определение частоты тона (звука определенной высоты (см. §158)) биений между эталонным и измеряемым колебаниями — наиболее широко применяемый на практике метод сравнения измеряемой величины с эталонной. Метод биений используется для настройки музыкальных инструментов, анализа слуха и т. д.
Любые сложные периодические колебания s=f(t) можно представить в виде суперпозиции одновременно совершающихся гармонических колебаний с различными амплитудами, начальными фазами, а также частотами, кратными циклической частоте ω0:
Представление периодической функции в виде (144.5) связывают с понятием гармонического анализа сложного периодического колебания, или разложения Фурье.
Члены ряда Фурье, определяющие гармонические колебания с частотами ω0, 2ω0, 3ω0,…, называются первой (или основной),
второй, третьей и т. д. гармониками сложного периодического колебания.
24. Сложение взаимно перпендикулярных колебаний
Рассмотрим результат сложения двух гармонических колебаний одинаковой частоты ω, происходящих во взаимно перпендикулярных направлениях вдоль осей х и у. Для простоты начало отсчета выберем так, чтобы начальная фаза первого колебания была равна нулю:
Разность фаз обоих колебаний равна φ, А и В — амплитуды складываемых колебаний.
Уравнение траектории результирующего колебания находится исключением из выражений (145.1) параметра t. Записывая складываемые колебания в виде
и заменяя во втором уравнении cosωt на х/А и sinωt на √(1-(х/A)2), получим после несложных преобразований уравнение эллипса, оси которого ориентированы относительно координатных осей произвольно:
Так как траектория результирующего колебания имеет форму эллипса, то такие колебания называются эллиптически поляризованными.
Ориентация осей эллипса и его размеры зависят от амплитуд складываемых колебаний и разности фаз φ. Рассмотрим некоторые частные случаи, представляющие физический интерес:
1) φ=mπ(m=0, ±1, ±2,…). В данном случае эллипс вырождается в отрезок
228
прямой
у=±(В/А)х, (145.3) где знак плюс соответствует нулю и четным значениям т (рис. 205, a), a знак минус — нечетным значениям т (рис. 205, б). Результирующее колебание является гармоническим колебанием
с частотой ω и амплитудой √(A2+В2), совершающимся вдоль прямой (145.3), составляющей с осью х угол φ=
В данном случае
имеем дело с линейно поляризованными колебаниями.
В данном случае уравнение примет вид
Это уравнение эллипса, оси которого совпадают с осями координат, а его полуоси равны соответствующим амплитудам (рис.206). Кроме того, если А=В, то эллипс (145.4) вырождается в окружность. Такие колебания называются циркулярно поляризованными колебаниями или колебаниями, поляризованными по кругу.
Если частоты складываемых взаимно перпендикулярных колебаний различны, то замкнутая траектория результирующего колебания довольно сложна. Замкнутые траектории, прочерчиваемые точкой, совершающей одновременно два взаимно перпендикулярных колебания, называются фигурами Лиссажу. Форма этих кривых зависит от соотношения амплитуд, частот и разности фаз складываемых колебаний. На рис. 207 представлены фигуры Лиссажу для различных соотношений частот (указаны слева) и разностей фаз (указаны вверху).
Отношение частот складываемых колебаний равно отношению числа пересечений фигур Лиссажу с прямыми, параллельными осям координат. По виду фигур можно определить неизвестную частоту по известной или определить отношение частот складываемых колебаний. Поэтому анализ фигур Лиссажу— широко используемый метод исследования соотношений частот и разности фаз складываемых колебаний, а также формы колебаний.
25. Волновые процессы. Продольные и поперечные волны
Колебания, возбужденные в какой-либо точке среды (твердой, жидкой или газообразной), распространяются в ней с конечной скоростью, зависящей от свойств среды, передаваясь от одной точки среды к другой. Чем дальше расположена частица среды от источника колебаний, тем позднее она начнет колебаться. Иначе говоря, фазы колебаний частиц среды и источника тем больше отличаются друг от друга, чем больше это расстояние. При изучении распространения колебаний не учитывается дискретное (молекулярное) строение среды и среда рассматривается каксплошная, т. е. непрерывно распределенная в пространстве и обладающая упругими свойствами.
Процесс распространения колебаний в сплошной среде называется волновым процессом (или волной). При распространении волны частицы среды не движутся вместе с волной, а колеблются около своих положений равновесия. Вместе с волной от частицы к частице среды передаются лишь состояние колебательного движения и его энергия. Поэтомуосновным свойством всех волн, независимо от их природы, является перенос энергии без переноса вещества.
Среди разнообразных волн, встречающихся в природе и технике, выделяются следующие их типы: волны на поверхности жидкости, упругие и электромагнитные волны. Упругими (или механическими) волнами называются механические возмущения, распространяющиеся в упругой среде. Упругие волны бывают продольные и поперечные. В продольных волнах частицы среды колеблются в направлении распространения волны, в поперечных — в плоскостях, перпендикулярных направлению распространения волны.
Продольные волны могут распространяться в средах, в которых возникают упругие силы при деформации сжатия и растяжения, т. е. твердых, жидких и газообразных телах. Поперечные волны могут распространяться в среде, в которой возникают упругие силы при деформации сдвига, т. е. фактически только в твердых телах; в жидкостях и газах возникают только продольные волны, а в твердых телах — как продольные, так и поперечные.
Упругая волна называется гармонической, если соответствующие ей колебания частиц среды являются гармоническими. На рис. 220 представлена гармоническая поперечная волна, распространяющаяся со скоростьюv вдоль оси x, т. е. приведена зависимость между смещением ζ частиц среды, участвующих в волновом процессе, и расстоянием х этих частиц (например, частицы В) от источника колебаний О для какого-то фиксированного момента времени t. Хотя приведенный график функции I (x, t) похож на график гармонического колебания, но они различны по существу. График волны дает зависимость смещения
всех частиц среды от расстояния до источника колебаний в данный момент времени, а график колебаний — зависимость смещения данной частицы от времени.
Расстояние между ближайшими частицами, колеблющимися в одинаковой фазе, называется длиной волны λ, (рис.220). Длина волны равна тому расстоянию, на которое распространяется определенная фаза колебания за период, т. е.
λ=vT,
или, учитывая, что T=1/v, где v — частота колебаний,
v=λv.
Если рассмотреть волновой процесс подробнее, то ясно, что колеблются не только частицы, расположенные вдоль оси х, а колеблется совокупность частиц, расположенных в некотором объеме, т. е. волна, распространяясь от источника колебаний, охватывает все новые и новые области пространства. Геометрическое место точек, до которых доходят колебания к моменту времени t, называется волновым фронтом. Геометрическое место точек, колеблющихся в одинаковой фазе, называется волновой поверхностью. Волновых поверхностей можно провести бесчисленное множество, а волновой фронт в каждый момент времени — один. Волновой фронт также является волновой поверхностью. В принципе волновые поверхности могут быть любой формы, а в простейшем случае они представляют собой совокупность плоскостей, параллельных друг другу, или совокупность концентрических сфер. Соответственно волна называется плоской или сферической.
§ 154. Уравнение бегущей волны. Фазовая скорость. Волновое уравнение
Бегущими волнами называются волны, которые переносят в пространстве энергию. Перенос энергии в волнах количественно характеризуется вектором плотности потока энергии. Этот вектор для упругих волн называется вектором Умова (по имени русского ученого Н. А. Умова (1846— 1915), решившего задачу о движении энергии в среде). Направление вектора Умова совпадает с направлением переноса энергии, а его модуль равен энергии, переносимой волной за единицу времени через единичную площадку, расположенную перпендикулярно направлению распространения волны.
Для вывода уравнения бегущей волны — зависимости смещения колеблющейся частицы от координат и времени — рассмотрим плоскую волну, предполагая, что колебания носят гармонический характер, а ось х совпадает с направлением распространения волны (рис. 220). В данном случае волновые поверхности перпендикулярны оси х, а так как все точки волновой поверхности колеблются одинаково, то смещение ξ будет зависеть только от х и t, т. е. ξ=ξ(х, t).
На рис. 220 рассмотрим некоторую частицу среды В, находящуюся от источника колебаний О на расстоянии х. Если колебания точек, лежащих в плоскости х=0, описываются функцией ξ(0, t)=Аcosωt, то частица среды В колеблется по тому же закону, но ее колебания будут отставать по времени от колебаний источника на т, так как для прохождения волной расстояния х требуется время τ=x/v, где v — скорость распространения волны. Тогда уравнение колебаний частиц, лежащих в плоскости х, имеет вид
ξ(x,t)=Acosω(t-x/v), (154.1)
откуда следует, что ξ(х, t) является не только периодической функцией времени, но и периодической функцией координаты х. Уравнение (154.1) есть уравнение бегущей волны. Если плоская волна распространяется в противоположном направлении, то
ξ(х, t)=A cosω(t+x/v).
В общем случае уравнение плоской волны, распространяющейся вдоль положительного направления оси х в среде, не поглощающей энергию, имеет вид
ξ(x,t)=Acos[ω(t -х/v)+φ0], (154.2)
где А=const — амплитуда волны, ω — циклическая частота волны, φ0 — начальная фаза колебаний, определяемая в общем случае выбором начал отсчета х и t, [ω(t-x/v)+φ0]—фаза плоской волны.
Для характеристики волн используется волновое число
k=2π/λ=2π/vT=ω/v. (154.3) Учитывая (154.3), уравнению (154.2) можно придать вид
ξ(x,t)=Acos(ωt-kх+φ0). (154.4)
Уравнение волны, распространяющейся вдоль отрицательного направления оси х, отличается от (154.4) только знаком члена kx.
Основываясь на формуле Эйлера (140.7), уравнение плоской волны можно записать в виде
ξ(x,t)=Aei(ωt-kx+φ0),
где физический смысл имеет лишь действительная часть (см. § 140).
Предположим, что при волновом процессе фаза постоянна, т. е.
ω(t-x/v)+φ0=const. (154.5) Продифференцировав выражение (154.5) и сократив на ω, получим
dt-(1/v)dx=0, откуда
dx/dt=v. (154.6)
Следовательно, скорость v распространения волны в уравнении (154.6) есть не что иное, как скорость перемещения фазы волны, и ее называют фазовой скоростью.
Повторяя ход рассуждений для плоской волны, можно доказать, что уравнение сферической волны — волны, волновые поверхности которой имеют вид концентрических сфер, записывается как
ξ(r,t)=A0/rcos(ωt-kr+φ0), (154.7)
где r — расстояние от центра волны до рассматриваемой точки среды. В случае сферической волны даже в среде, не поглощающей энергию, амплитуда колебаний не остается постоянной, а убывает с расстоянием по закону 1/r. Уравнение (154.7) справедливо лишь для r, значительно превышающих размеры источника (тогда источник колебаний можно считать точечным).
Из выражения (154.3) вытекает, что фазовая скорость
v=ω/k. (154.8)
Если фазовая скорость волн в среде зависит от их частоты, то это явление называют дисперсией волн, а среда, в которой наблюдается дисперсия волн, называется диспергирующей средой.
Распространение волн в однородной изотропной среде в общем случае описывается волновым уравнением — дифференциальным уравнением в частных производных
где v — фазовая скорость, Δ=д2/дx2 +д2/дy2+д2/дz2 — оператор Лапласа. Решением уравнения (154.9) является уравнение любой волны. Соответствующей подстановкой можно убедиться, что уравнению (154.9) удовлетворяют, в частности, плоская волна (см. (154.2)) и сферическая волна (см. (154.7)). Для плоской волны, распространяющейся вдоль оси х, волновое уравнение имеет вид