Шпоры – 26-30

26. Эффект Доплера в акустике

Эффектом Доплера называется измене­ние частоты колебаний, воспринимаемой приемником, при движении источника этих колебаний и приемника друг относительно друга. Например, из опыта известно, что тон гудка поезда повышается по мере его приближения к платформе и понижается при удалении, т. е. движение источника колебаний (гудка) относительно приемни­ка (уха) изменяет частоту принимаемых колебаний.

Для рассмотрения эффекта Доплера предположим, что источник и приемник звука движутся вдоль соединяющей их прямой; vист и vпр — соответственно ско­рости движения источника и приемника, причем они положительны, если источ­ник (приемник) приближается к приемни­ку (источнику), и отрицательны, если уда­ляется. Частота колебаний источника рав­на v0.

1. Источник и приемник покоятся от­носительно среды, т.е. vист=vпр=0. Если v — скорость распространения звуковой волны в рассматриваемой среде, то длина волны λ=vT=v/v0. Распространяясь в среде, волна достигнет приемника и вы­зовет колебания его звукочувствительного элемента с частотой

ν=v/λ=v/(vT)=ν0

Следовательно, частота v звука, которую зарегистрирует приемник, равна частоте ν0, с которой звуковая волна излучается источником.

2. Приемник приближается к источни­ку, а источник покоится, т.е. vпр>0, vист=0. В данном случае скорость распро­странения волны относительно приемника станет равной v+vпр. Так как длина во­лны при этом не меняется, то

т. е. частота колебании, воспринимаемых приемником, в (v+vпр)/v раз больше частоты колебаний источника.

 

3. Источник приближается к приемни­ку, а приемник покоится, т.е. vист>0, vпр=0. Скорость распространения колеба­ний зависит лишь от свойств среды, поэто­му за время, равное периоду колебаний источника, излученная им волна пройдет в направлении к приемнику расстояние vT (равное длине волны Я) независимо от того, движется ли источник или покоится. За это же время источник пройдет в на­правлении волны расстояние vистT (рис.224), т.е. длина волны в направле­нии движения сократится и станет равной λ’=λ-vистТ=(v-vист)Т, тогда

т. е. частота v колебаний, воспринимаемых приемником, увеличится в v/(v-vист) раз. В случаях 2 и 3, если vист<0 и vпр<0, знак будет обратным.

4. Источник и приемник движутся от­носительно друг друга. Используя резуль­таты, полученные для случаев 2 и 3, можно записать выражение для частоты колеба­ний, воспринимаемых источником:

причем верхний знак берется, если при движении источника или приемника про­исходит их сближение, нижний знак — в случае их взаимного удаления.

Из приведенных формул следует, что эффект Доплера различен в зависимости от того, движется ли источник или при­емник. Если направления скоростей vпр и vист не совпадают с проходящей через источник и приемник прямой, то вместо этих скоростей в формуле (159.1) надо брать их проекции на направление этой прямой.

27. Стоячие волны

Особым случаем интерференции являются стоячие волны — это волны, образующие­ся при наложении двух бегущих волн, рас­пространяющихся навстречу друг другу с одинаковыми частотами и амплитудами. Для вывода уравнения стоячей волны предположим, что две плоские волны рас­пространяются навстречу друг другу вдоль оси х в среде без затухания, причем обе волны характеризуются одинаковыми амплитудами и частотами. Кроме того, начало координат выберем в точке, в кото­рой обе волны имеют одинаковую фазу, а отсчет времени начнем с момента, когда фазы обеих волн равны нулю. Тогда соответственно уравнения волны, распро­страняющейся вдоль положительного на­правления оси х, и волны, распространяю­щейся ей навстречу, будут иметь вид

Сложив эти уравнения и учитывая, что k= 2π/λ (см. (154.3)), получим уравнение стоячей волны:

Из уравнения стоячей волны (157.2) вытекает, что в каждой точке этой волны происходят колебания той же частоты ω с амплитудой Аст=|2Аcos(2πх/λ)|, зави­сящей от координаты х рассматриваемой точки.

В точках среды, где

2πx/λ=±mπ   (m=0, 1, 2, …),     (157.3)

амплитуда колебаний достигает макси­мального значения, равного 2 А. В точках среды, где

2πx/λ=±(m+1/2)π    (m=0,1,2,…),

(157.4)

амплитуда колебаний обращается в нуль. Точки, в которых амплитуда колебаний максимальна (Aст=2А), называются пучностями стоячей волны, а точки, в ко­торых амплитуда колебаний равна нулю (Aст=0), называются узлами стоячей во­лны. Точки среды, находящиеся в узлах, колебаний не совершают.

Из выражений (157.3) и (157.4) полу­чим соответственно координаты пучностей и узлов:

х0=±тλ/2   (m=0, 1,2, …),   (157.5)

хузл=±(т+1/2)λ/2   (m=0, 1, 2, …).

(157.6)

Из формул (157.5) и (157.6) следует, что расстояния между двумя соседними пуч­ностями и двумя соседними узлами одина­ковы и равны λ/2. Расстояние между соседними пучностью и узлом стоячей волны равно λ/4.

В отличие от бегущей волны, все точки которой совершают колебания с одинако­вой амплитудой, но с запаздыванием по фазе (в уравнении (157.1) бегущей волны фаза колебаний зависит от координаты х рассматриваемой точки), все точки стоя­чей волны между двумя узлами колеблют­ся с разными амплитудами, но с одинако­выми фазами (в уравнении (157.2) стоя­чей волны аргумент косинуса не зависит от х). При переходе через узел множитель 2Аcos(2πx/λ) меняет свой знак, поэтому фаза колебаний по разные стороны от узла отличается на π, т. е. точки, лежащие по разные стороны от узла, колеблются в противофазе.

Образование стоячих волн наблюдают при интерференции бегущей и отраженной волн. Например, если конец веревки за­крепить неподвижно, то отраженная в месте закрепления веревки волна будет интерферировать с бегущей волной и об­разует стоячую волну. На границе, где происходит отражение волны, в данном случае получается узел. Будет ли на гра­нице отражения узел или пучность, за­висит от соотношения плотностей сред. Если среда, от которой происходит отра­жение, менее плотная, то в месте отраже­ния получается пучность (рис. 222, а), ес­ли более плотная — узел (рис. 222, б). Об­разование узла связано с тем, что волна, отражаясь от более плотной среды, меняет фазу на противоположную и у границы происходит сложение колебаний противо­положных направлений, в результате чего получается узел. Если же волна отражает­ся от менее плотной среды, то изменения фазы не происходит и у границы колеба­ния складываются с одинаковыми фаза­ми — получается пучность.

Если рассматривать бегущую волну, то в направлении ее распространения пе­реносится энергия колебательного движе­ния. В случае же стоячей волны переноса энергии нет, так как падающая и отражен­ная волны одинаковой амплитуды несут одинаковую энергию в противоположных направлениях. „Поэтому полная энергия результирующей стоячей волны, заклю

 

ченной между узловыми точками, остается постоянной. Лишь в пределах расстояний, равных половине длины волны, происхо­дят взаимные превращения кинетической энергии в потенциальную и обратно.

28. 29. Средняя скорость и поток молекул основное уравнение молекулярно-кинетической теории идеальных газов

 

Для вывода основного уравнения молеку­лярно-кинетической теории рассмотрим одноатомный идеальный газ. Предполо­жим, что молекулы газа движутся хаоти­чески, число взаимных столкновений меж­ду молекулами газа пренебрежимо мало по сравнению с числом ударов о стенки сосуда, а соударения молекул со стенками сосуда абсолютно упругие. Выделим на стенке сосуда некоторую элементарную площадкуΔS (рис. 64) и вычислим давле­ние, оказываемое на эту площадку. При каждом соударении молекула, движущая­ся перпендикулярно площадке, передает ей импульс m0v-(-m0v)=2m0v, где т0 — масса молекулы, v — ее скорость. За время Δt площадки ΔS достигнут только те молекулы, которые заключены в объеме цилиндра с основанием ΔS и высотой vΔt (рис.64). Число этих молекул равно nΔSvΔt (n—концентрация молекул).

Необходимо,   однако,   учитывать,   что реально молекулы движутся к площадке

ΔS под разными углами и имеют различ­ные скорости, причем скорость молекул при каждом соударении меняется. Для упрощения расчетов хаотическое движе­ние молекул заменяют движением вдоль трех взаимно перпендикулярных направ­лений, так что в любой момент времени вдоль каждого из них движется 1/3 моле­кул, причем половина молекул (1/6) дви­жется вдоль данного направления в одну сторону, половина — в противоположную. Тогда число ударов молекул, движущихся в заданном направлении, о площадку ΔS будет 1/6nΔSvΔt. При столкновении с пло­щадкой эти молекулы передадут ей им­пульс

ΔР = 2m0v•1/6nΔSvΔt=1/3nm0v2ΔSΔt.

Тогда давление газа, оказываемое им на стенку сосуда,

p=ΔP/(ΔtΔS)=1/3nm0v2.      (43.1)

Если газ в объеме V содержит N молекул,

движущихся со скоростями v1, v2, …, vN, то

целесообразно рассматривать среднюю квадратичную скорость

характеризующую всю совокупность моле­кул газа.

Уравнение (43.1) с учетом (43.2) при­мет вид

р = 1/3пт0 <vкв>2. (43.3)

Выражение (43.3) называется основ­ным уравнением молекулярно-кинетической теории идеальных газов. Точный рас­чет с учетом движения молекул по все-

возможным   направлениям   дает   ту   же формулу.

Учитывая, что n = N/V, получим

где Е — суммарная кинетическая энергия поступательного движения всех молекул газа.

Так как масса газа m =Nm0, то урав­нение (43.4)  можно переписать в виде

pV=1/3m<vкв>2.

Для одного моля газа т = М (М — моляр­ная масса), поэтому

pVm=1/3M<vкв>2,

где Vm — молярный объем. С другой сто­роны, по уравнению Клапейрона — Мен­делеева, pVm=RT. Таким образом,

RT=1/3М <vкв>2, откуда

Так как М = m0NA, где m0—масса од­ной молекулы, а NА — постоянная Авогад­ро, то из уравнения (43.6) следует, что

где k = R/NA—постоянная Больцмана. Отсюда найдем, что при комнатной темпе­ратуре молекулы кислорода имеют сред­нюю квадратичную скорость 480 м/с, во­дорода — 1900 м/с. При температуре жид­кого гелия те же скорости будут соответ­ственно 40 и 160 м/с.

Средняя кинетическая энергия посту­пательного движения одной молекулы иде­ального газа

<ε0) =E/N = m0 <vкв>)2/2 = 3/2kT(43.8)

(использовали формулы (43.5) и (43.7)) пропорциональна термодинамической тем­пературе и зависит только от нее. Из этого уравнения следует, что при T=0 <ε0> =0,

т. е. при 0 К прекращается поступательное движение молекул газа, а следовательно, его давление равно нулю. Таким образом, термодинамическая температура является мерой средней кинетической энергии по­ступательного движения молекул идеаль­ного газа и формула (43.8) раскрывает молекулярно-кинетическое толкование температуры.

30 Закон Максвелла для распределения молекул идеального газа по скоростям и энергиям теплового движения

При выводе основного уравнения молекулярно-кинетической теории молекулам за­давали различные скорости. В результате многократных соударений скорость каждой молекулы изменяется по модулю и на­правлению. Однако из-за хаотического движения молекул все направления дви­жения являются равновероятными, т. е. в любом направлении в среднем дви­жется одинаковое число молекул.

По молекулярно-кинетической теории, как бы ни изменялись скорости молекул при столкновениях, средняя квадратичная скорость молекул массой m0 в газе, на­ходящемся в состоянии равновесия при Т = const, остается постоянной и равной <vкв> =√3kT/m0. Это объясняется тем, что в газе, находящемся в состоянии равновесия, устанавливается некоторое стационарное, не меняющееся со временем распределение молекул по скоростям, ко­торое подчиняется вполне определенному статистическому закону. Этот закон теоре­тически выведен Дж. Максвеллом.

При выводе закона распределения мо­лекул по скоростям Максвелл предпола­гал, что газ состоит из очень большого числа N тождественных молекул, находя­щихся в состоянии беспорядочного тепло­вого движения при одинаковой температу­ре. Предполагалось также, что силовые поля на газ не действуют.

Закон Максвелла описывается некото­рой функцией f(v), называемой функцией распределения молекул по скоростям. Ес­ли разбить диапазон скоростей молекул на

малые интервалы, равные dv, то на каж­дый интервал скорости будет приходиться некоторое число молекул dN(v), имеющих скорость, заключенную в этом интервале. Функция f(v) определяет относительное число молекул dN (v)/N, скорости которых лежат в интервале от v до v+dv, т. е.

откуда

f(v)=dN(v)/Ndv

Применяя методы теории вероятно­стей, Максвелл нашел функцию f(v) — закон для распределения молекул идеаль­ного газа по скоростям:

Из (44.1) видно, что конкретный вид фун­кции зависит от рода газа (от массы моле­кулы) и от параметра состояния (от тем­пературы Т).

График функции (44.1) приведен на рис. 65. Так как при возрастании v множитель уменьшается быстрее, чем растет множитель v2, то функция f(v), начинаясь от нуля, достигает максимума при vв и затем асимптотически стремится к нулю. Кривая несимметрична относи­тельно vв.

Относительное число молекул dN(v)/N, скорости которых лежат в интервале от v до v+dv, находится как площадь бо­лее светлой полоски на рис. 65. Площадь, ограниченная кривой распределения

 

и осью абсцисс, равна единице. Это озна­чает, что функция f(v) удовлетворяет усло­вию нормировки

Скорость, при которой функция рас­пределения молекул идеального газа по скоростям максимальна, называется наи­более вероятной скоростью. Значение наи­более вероятной скорости можно найти продифференцировав выражение (44.1) (постоянные множители опускаем) по ар­гументу v, приравняв результат нулю и ис­пользуя условие для максимума выраже­ния f(v):

 

Значения v=0 и v=∞ соответствуют минимумам выражения (44.1), а значе­ние v, при котором выражение в скобках становится равным нулю, и есть искомая наиболее вероятная скорость vв:

Из формулы (44.2) следует, что при повышении температуры максимум функ­ции распределения молекул по скоростям (рис. 66) сместится вправо (значение наи­более вероятной скорости становится больше). Однако площадь, ограниченная кривой, остается неизменной, поэтому при повышении температуры кривая распреде­ления молекул по скоростям будет растя­гиваться и понижаться.

Средняя скорость молекулы <v> (средняя арифметическая скорость)

 

определяется по формуле

Подставляя сюда  f(v) и  интегрируя,  по­лучим

Скорости, характеризующие состояние газа: 1) наиболее вероятная vв=√2RT/М; 2) средняя <v>=√8RT/(πМ)=1,13vв; 3) средняя квадратичная <vкв> =√3RT/М =1,22vв (рис.65).