Шпоры – 6-10

6. Импульс. З-н сохр. импульса

Векторная величина p = mv, (6.6) численно равная произведению массы ма­териальной точки на ее скорость и име­ющая направление скорости, называется импульсом (количеством движения) этой материальной точки.

 

В   случае   отсутствия    внешних   сил (рассматриваем замкнутую систему)

 

 

Это выражение и является законом сохранения импульса: импульс замкнутой системы сохраняется, т. е. не изменяется с течением времени.

Закон сохранения импульса справед­лив не только в классической физике, хотя он и получен как следствие законов Ньютона. Эксперименты доказывают, что он выполняется и для замкнутых систем микрочастиц (они подчиняются законам квантовой механики). Этот закон носит универсальный характер, т. е. закон со­хранения импульса — фундаментальный закон природы.

В механике Галилея — Ньютона из-за независимости массы от скорости импульс системы может быть выражен через ско­рость ее центра масс. Центром масс (или центром инерции) системы материальных точек называется воображаемая точка С, положение которой характеризует распре­деление массы этой системы. Ее радиус-вектор равен

где mi и ri — соответственно масса и радиус-вектор i-й материальной точки; n — число материальных точек в системе;

— масса системы.

Скорость центра масс

 

 

Учитывая, что pi =mivi, а

есть импульс р системы, можно написать

p = mvc, (9.2)

т. е. импульс системы равен произведе­нию массы системы на скорость ее цент­ра масс.

Подставив выражение (9.2) в уравне­ние (9.1), получим

mdvc/dt=F1+ F2+…+ Fn,      (9.3)

т. е. центр масс системы движется как материальная точка, в которой сосредото­чена масса всей системы и на которую действует сила, равная геометрической сумме всех внешних сил, действующих на систему. Выражение (9.3) представляет собойзакон движения центра масс.

В соответствии с (9.2) из закона со­хранения импульса вытекает, что центр масс замкнутой системы либо движется прямолинейно и равномерно, либо остает­ся неподвижным.

7. Уравнение движения тел с переменной массой

Движение некоторых тел сопровождается изменением их массы, например масса ра­кеты уменьшается за счет истечения газов, образующихся при сгорании топлива, и т. п.

Выведем уравнение движения тела пе­ременной массы на примере движения ра­кеты. Если в момент времени t масса раке­ты т, а ее скорость v, то по истечении времени dt ее масса уменьшится на dm

и станет равной т-dm, а скорость станет равной v+dv. Изменение импульса систе­мы за отрезок времени dt

dp = [(m-dm) (v+dv)+dm (v + u)]- mv,

где и — скорость истечения газов относи­тельно ракеты. Тогда

dp = mdv + udm

(учли, что dm dv — малый высшего порядка малости по сравнению с осталь­ными).

Если  на  систему действуют  внешние силы, то dp = Fdt, поэтому

Fdt = mdv + udm,

mdv/dt=F-udm/dt.     (10.1)

Член -udm/dt называют реактивной силой

at

Fp. Если u противоположен v, то ракета ускоряется, а если совпадает с v, то тормо­зится.

Таким образом, мы получили уравне­ние движения тела переменной массы

ma=F + Fp, (10.2)

которое впервые было выведено И. В.Ме­щерским (1859—1935).

Идея применения реактивной силы для создания летательных аппаратов высказы­валась в 1881 г. Н. И. Кибальчичем (1854—1881). К.Э.Циолковский (1857— 1935) в 1903 г. опубликовал статью, где

предложил теорию движения ракеты и ос­новы теории жидкостного реактивного двигателя. Поэтому его считают основате­лем отечественной космонавтики.

Применим уравнение (10.1) к движе­нию ракеты, на которую не действуют ни­какие внешние силы. Полагая F = 0 и счи­тая, что скорость выбрасываемых газов относительно ракеты постоянна (ракета движется прямолинейно), получим

dv dm т dv/dt=-udm/dt. откуда

Значение постоянной интегрирования С определим из начальных условий. Если в начальный момент времени скорость ра­кеты равна нулю, а ее стартовая масса то, то С = uln m0. Следовательно,

v = uln(m0/m). (10.3)

Это соотношение называется формулой Циолковского. Она показывает, что: 1) чем больше конечная масса ракеты т, тем больше должна быть стартовая масса ракеты то; 2) чем больше скорость истече­ния и газов, тем больше может быть ко­нечная масса при данной стартовой массе ракеты.

Выражения (10.2) и (10.3) получены для нерелятивистских движений, т. е. для случаев, когда скорости v и u малы по сравнению со скоростью света с.

8. Работа и кинетическая энергия

Энергия — универсальная мера различ­ных форм движения и взаимодействия. С различными формами движения мате­рии связывают различные формы энергии: механическую, тепловую, электромагнит­ную, ядерную и др. В одних явлениях форма движения материи не изменяется (например, горячее тело нагревает холод­ное), в других — переходит в иную фор­му (например, в результате трения меха­ническое движение превращается в тепло­вое). Однако существенно, что во всех случаях энергия, отданная (в той или иной форме) одним телом другому телу, равна энергии, полученной последним телом.

Изменение механического движения тела вызывается силами, действующими на него со стороны других тел. Чтобы

количественно характеризовать процесс обмена энергией между взаимодействую­щими телами, в механике вводится по­нятие работы силы.

Если тело движется прямолинейно и на него действует постоянная сила F, которая составляет некоторый угол а с на­правлением перемещения, то работа этой силы равна произведению проекции силы Fs на направление перемещения (Fs =Fcosα), умноженной на перемещение точки приложения силы:

A = Fss = Fscosα. (11.1)

В общем случае сила может изменять­ся как по модулю, так и по направлению, поэтому формулой (11.1) пользоваться не­льзя. Если, однако, рассмотреть элемен­тарное перемещение dr, то силу F можно считать постоянной, а движение точки ее

 

 

приложения — прямолинейным. Элемен­тарной работой силы F на перемещении dr называется скалярная величина

dА =Fdr = Fcosα•ds=Fsds,

где а — угол между векторами F и dr; ds = |dr| — элементарный путь; Fs — про­екция вектора F на вектор dr (рис. 13).

Работа силы на участке траектории от точки 1 до точки 2 равна алгебраической сумме элементарных работ на отдельных бесконечно малых участках пути. Эта сум­ма приводится к интегралу

Для вычисления этого интеграла надо знать зависимость силы Fs от пути s вдоль траектории 1—2. Пусть эта зависимость представлена графически (рис. 14), тогда искомая работа А определяется на графи­ке площадью закрашенной фигуры. Если, например, тело движется прямолинейно, сила F=const и α=const, то получим

где s — пройденный телом путь (см. также формулу (11.1)).

Из формулы (11.1) следует, что при α<π/2 работа силы положительна, в этом случае составляющая Fs совпадает

 

 

по направлению с вектором скорости дви­жения v (см. рис. 13). Если α>π/2, то работа силы отрицательна. При α=π/2 (сила направлена перпендикулярно пере­мещению) работа силы равна нулю.

Единица работы — джоуль (Дж): 1 Дж — работа, совершаемая силой в 1 Н на пути в 1 м (1 Дж = 1 Н•м).

Чтобы охарактеризовать скорость со­вершения работы, вводят понятие мощ­ности:

N=da/dt. (11.3)

За время dt сила F совершает работу Fdr, и мощность, развиваемая этой силой, в данный момент времени

N=Fdr/dt=Fv

т. е. равна скалярному произведению век­тора силы на вектор скорости, с которой движется точка приложения этой силы; N — величина скалярная.

Единица мощности — ватт (Вт): 1 Вт — мощность, при которой за время 1 с совершается работа в 1 Дж (1 Вт = 1 Дж/с).

Кинетическая энергия механической системы — это энергия механического движения этой системы.

Сила F, действуя на покоящееся тело и вызывая его движение, совершает рабо­ту, а энергия движущегося тела возраста­ет на величину затраченной работы. Таким образом, работа dA силы F на пути, кото­рый тело прошло за время возрастания скорости от 0 до v, идет на увеличение кинетической энергии dT тела, т. е.

dA= dT.

Используя второй закон Ньютона F=mdv/dt

и умножая обе части равен­ства на перемещение dr, получим

Fdr =m(dv/dt)dr=dA

Таким образом, тело массой т, движущее­ся со скоростью v, обладает кинетической энергией

Т = тv2/2. (12.1)

Из формулы (12.1) видно, что кинети­ческая энергия зависит только от массы и скорости тела, т. е. кинетическая энергия системы есть функция состояния ее дви­жения.

При выводе формулы (12.1) предпола­галось, что движение рассматривается в инерциальной системе отсчета, так как иначе нельзя было бы использовать за­коны Ньютона. В разных инерциальных системах отсчета, движущихся друг отно­сительно друга, скорость тела, а следова­тельно, и его кинетическая энергия будут неодинаковы. Таким образом, кинетиче­ская энергия зависит от выбора системы отсчета.

 

9. Потенциальное поле сил. Консервативный и диссипативные силы. Потенциальная энергия. З-н сохранения энергии.

Потенциальная энергия — механиче­ская энергия системы тел, определяемая их взаимным расположением и характе­ром сил взаимодействия между ними.

Пусть взаимодействие тел осуществля­ется посредством силовых полей (напри­мер, поля упругих сил, поля гравитацион­ных сил), характеризующихся тем, что работа, совершаемая действующими сила­ми при перемещении тела из одного поло­жения в другое, не зависит от того, по какой траектории это перемещение прои­зошло, а зависит только от начального и конечного положений. Такие поля на­зываются потенциальными, а силы, дей­ствующие в них,— консервативными. Если же работа, совершаемая силой, зависит от траектории перемещения тела из одной точки в другую, то такая сила называется диссипативной; ее примером является си­ла трения.

Тело, находясь в потенциальном поле сил, обладает потенциальной энергией II. Работа консервативных сил при элемен­тарном (бесконечно малом) изменении конфигурации системы равна приращению потенциальной энергии, взятому со знаком минус, так как работа совершается за счет убыли потенциальной энергии:

dA=-dП. (12.2)

Работа dА выражается как скалярное произведение силы F на перемещение dr и выражение (12.2) можно записать в виде

Fdr=-dП. (12.3)

Следовательно, если известна функция П(r), то из формулы (12.3) можно найти силу F по модулю и направлению.

Потенциальная энергия может быть определена исходя из (12.3) как

где С — постоянная интегрирования, т. е. потенциальная энергия определяется с точностью до некоторой произвольной по­стоянной. Это, однако, не отражается на физических законах, так как в них входит или разность потенциальных энергий в двух положениях тела, или производная П по координатам. Поэтому потенциаль­ную энергию тела в каком-то определен­ном положении считают равной нулю (вы­бирают нулевой уровень отсчета), а энер­гию тела в других положениях отсчитыва­ют относительно нулевого уровня. Для консервативных сил

или в векторном виде

F=-gradП, (12.4) где

(i, j, k — единичные векторы координат­ных осей). Вектор, определяемый выраже­нием (12.5), называется градиентом ска­ляра П.

Для него наряду с обозначением grad П применяется также обозначение ∇П. ∇ («набла») означает символический вектор, называе­мый оператором Гамильтона или набла-оператором:

Конкретный вид функции П зависит от характера силового поля. Например, по­тенциальная энергия тела массой т, под­нятого на высоту h над поверхностью Зем­ли, равна

П = mgh, (12.7)

где высота h отсчитывается от нулевого уровня, для которого П0 = 0. Выражение (12.7) вытекает непосредственно из того, что потенциальная энергия равна работе силы тяжести при падении тела с высотыh на поверхность Земли.

Так как начало отсчета выбирается произвольно, то потенциальная энергия может иметь отрицательное значение (ки­нетическая энергия всегда положитель­на!}. Если принять за нуль потенциальную энергию тела, лежащего на поверхности Земли, то потенциальная энергия тела, находящегося на дне шахты (глубина h’), П=-mgh’.

Найдем потенциальную энергию упругодеформированного тела (пружины). Сила упругости пропорциональна дефор­мации:

Fх упр= -kx,

где Fxупр — проекция силы упругости на ось х; k — коэффициент упругости (для пружины — жесткость), а знак минус ука­зывает, что Fx упр направлена в сторону, противоположную деформации х.

По третьему закону Ньютона, дефор­мирующая сила равна по модулю силе упругости и противоположно ей направле­на, т. е.

Fx=-Fx упр=kx Элементарная работа dA, совершаемая силой Fx при бесконечно малой деформации dx, равна

dA = Fx dx = kxdx,

а полная работа

идет на увеличение потенциальной энергии пружины. Таким образом, потенциальная энергия упругодеформированного тела

П=kx2/2.

Потенциальная энергия системы, подо­бно кинетической энергии, является функ­цией состояния системы. Она зависит толь­ко от конфигурации системы и ее положе­ния по отношению к внешним телам.

Полная механическая энергия систе­мы — энергия механического движения и взаимодействия:

Е = Е+П,

т. е. равна сумме кинетической и потен­циальной энергий.

************

При переходе системы из состояния 1 в ка­кое-либо состояние 2

т. е. изменение полной механической энер­гии системы при переходе из одного со­стояния в другое равно работе, совершен­ной при этом внешними неконсервативны­ми силами. Если внешние неконсерватив­ные силы отсутствуют, то из (13.2) следует, что

d(Т+П) = 0,

откуда

Т+П = E=const, (13.3)

т. е. полная механическая энергия системы сохраняется постоянной. Выражение (13.3) представляет собой закон сохране­ния механической энергии: в системе тел, между которыми действуют только кон­сервативные силы, полная механическая энергия сохраняется, т. е. не изменяется со временем.

Механические системы, на тела кото­рых действуют только консервативные си­лы (внутренние и внешние), называются консервативными системами. Закон сохра­нения механической энергии можно сфор­мулировать так: в консервативных систе­мах полная механическая энергия сохра­няется.

Закон сохранения механической энер­гии связан с однородностью времени, т. е. инвариантностью физических зако­нов относительно выбора начала отсчета времени. Например, при свободном паде­нии тела в поле сил тяжести его скорость и пройденный путь зависят лишь от на­чальной скорости и продолжительности свободного падения тела и не зависят от того, когда тело начало падать.

Существует еще один вид систем — диссипативные системы, в которых меха­ническая энергия постепенно уменьшается за счет преобразования в другие (немеханические) формы энергии. Этот процесс получил названиедиссипации (или рассе­яния) энергии. Строго говоря, все системы в природе являются диссипативными.

В консервативных системах полная механическая энергия остается постоян­ной. Могут происходить лишь превраще­ния кинетической энергии в потенциаль­ную и обратно в эквивалентных количе­ствах, так что полная энергия остается неизменной. Поэтому, как указывает Ф. Энгельс, этот закон не есть просто за­кон количественного сохранения энергии, а закон сохранения и превращения энер­гии, выражающий и качественную сторо­ну взаимного превращения различных форм движения друг в друга. Закон со­хранения и превращения энергии — фун­даментальный закон природы, он справед­лив как для систем макроскопических тел, так и для систем микротел.

В системе, в которой действуют также неконсервативные силы, например силы трения, полная механическая энергия системы не сохраняется. Следовательно, в этих случаях закон сохранения механи­ческой энергии несправедлив. Однако при «исчезновении» механической энергии всегда возникает эквивалентное количест­во энергии другого вида. Таким образом, энергия никогда не исчезает и не появля­ется вновь, она лишь превращается из одного вида в другой. В этом и заключает­ся физическая сущность закона сохране­ния и превращения энергии — сущность неуничтожимости материи и ее движения.

10. Движение материальной точки в поле сил тяготения

законы движения планет:

1. Планеты движутся по эллипсам, в одном из фокусов которого находится Солнце.

2. Радиус-вектор планеты за равные промежутки времени описывает одинако­вые площади.

3. Квадраты периодов обращения пла­нет вокруг Солнца относятся как кубы больших полуосей их орбит.

Впоследствии И. Ньютон, изучая дви­жение небесных тел, на основании законов

Кеплера и основных законов динамики открыл всеобщий закон всемирного тя­готения: между любыми двумя материаль­ными точками действует сила взаимного притяжения, прямо пропорциональная произведению масс этих точек (m1 и m2) и обратно пропорциональная квадрату расстояния между ними (r2):

F=Gm1m2/r2. (22.1)

Эта сила называется гравитационной (или силой всемирного тяготения). Силы тяго­тения всегда являются силами притяже­ния и направлены вдоль прямой, проходя­щей через взаимодействующие тела. Ко­эффициент пропорциональности G на­зывается гравитационной постоянной.

Закон всемирного тяготения установ­лен для тел, принимаемых за материальные точки, т. е. для таких тел, размеры кото­рых малы по сравнению с расстоянием между ними. Если же размеры взаимодей­ствующих тел сравнимы с расстоянием между ними, то эти тела надо разбить на точечные элементы, подсчитать по форму­ле (22.1) силы притяжения между всеми попарно взятыми элементами, а затем гео­метрически их сложить (проинтегриро­вать), что является довольно сложной ма­тематической задачей.

Если пренебречь суточным вращением Земли вокруг своей оси, то сила тяжести и сила гравитационного тяготения равны между собой:

P = mg=F=GmM/R2,

где M — масса Земли; R — расстояние между телом и центром Земли. Эта форму­ла дана для случая, когда тело находилось на поверхности Земли.

Пусть тело расположено на высоте h от поверхности Земли, r0 — радиус Зем­ли, тогда

P=GmM/(R0 + h)2,

т. е. сила тяжести с удалением от поверхности Земли уменьшается.

В физике применяется также понятие веса тела. Весом тела называют силу, с которой тело вследствие тяготения к Земле действует на опору (или подвес), удерживающую тело от свободного паде­ния. Вес тела проявляется только в том случае, если тело движется с ускорением, отличным от g, т. е. когда на тело кроме силы тяжести действуют другие силы. Со­стояние тела, при котором оно движется только под действием силы тяжести, на­зывается состоянием невесомости.

Работа в поле тяготения. Потенциал поля тяготения

Рассмотрим, чему равна работа, соверша­емая силами поля тяготения при переме­щении в нем материальной точки мас­сой т. Вычислим, например, какую надо затратить работу для удаления тела мас­сой т от Земли. На расстоя­нии R (рис. 39) на данное тело действует сила

F=GmM/R2.

 

При перемещении этого тела на расстоя­ние dR затрачивается работа

 

Знак минус появляется потому, что сила и перемещение в данном случае противо­положны по направлению (рис.39).

 

Если тело перемещать с расстояния R1 до R2, то затрачивается работа

 

Из формулы (25.2) вытекает, что за­траченная работа в поле тяготения не зависит от траектории перемещения, а оп­ределяется лишь начальным и конечным положениями тела, т. е. силы тяготения действительно консервативны, а поле тя­готения является потенциальным (см. § 12).

Согласно формуле (12.2), работа, со­вершаемая консервативными силами, рав­на изменению потенциальной энергии системы, взятому со знаком минус, т. е.

А = -ΔП = -(П2-П1)= П1-П2.

Из формулы (25.2) получаем

П1-П2= – m(GM/R1 – GM/R2).

(25.3)

Так как в формулы входит только раз­ность потенциальных энергий в двух со­стояниях, то для удобства принимают по­тенциальную энергию при R2→∞ равной нулю ( lim П2=0 при R2→∞). Тогда (25.3) запишется в виде П1= – GmM/R1. Так как пер­вая точка была выбрана произвольно, то

П=-GmM/R.

Космические скорости

Для запуска ракет в космическое про­странство надо в зависимости от постав­ленных целей сообщать им определенные начальные скорости, называемые космиче­скими.

Первой космической (или круговой) скоростью v1 называют такую минималь­ную скорость, которую надо сообщить те­лу, чтобы оно могло двигаться вокруг Зем­ли по круговой орбите, т. е. превратиться в искусственный спутник Земли. На спут­ник, движущийся по круговой орбите ра­диусом r, действует сила тяготения Зем­ли, сообщающая ему нормальное ускоре­ние v21/r. По второму закону Ньютона,

GmM/r2=mv21/r.

Если спутник движется недалеко от поверхности Земли, тогда r≈R0 (радиус Земли) и g=GM/R20(cм. (25.6)), поэтому у поверхности Земли

Первой космической скорости недоста­точно для того, чтобы тело могло выйти из сферы земного притяжения. Необходимая для этого скорость называется второй кос­мической. Второй космической (или пара­болической) скоростью v2 называют ту наименьшую скорость, которую надо со­общить телу, чтобы оно могло преодолеть притяжение Земли и превратиться в спут­ник Солнца, т. е. чтобы его орбита в поле тяготения Земли стала параболической. Для того чтобы тело (при отсутствии со­противления среды) могло преодолеть земное притяжение и уйти в космическое пространство, необходимо, чтобы его кине­тическая энергия была равна работе, совершаемой против сил тяготения:

Третьей космической скоростью v3 на­зывают скорость, которую необходимо со­общить телу на Земле, чтобы оно покинуло пределы Солнечной системы, преодолев притяжение Солнца. Третья космическая скорость v3=16,7 км/с. Сообщение телам таких больших начальных скоростей явля­ется сложной технической задачей. Ее первое теоретическое осуществление на­чато К. Э. Циолковским, им была выведе­на уже рассмотренная нами формула