16. Динамика гармонических колебаний
Механические гармонические колебания
Пусть материальная точка совершает прямолинейные гармонические колебания вдоль оси координат х около положения равновесия, принятого за начало координат. Тогда зависимость координаты х от времени t задается уравнением, аналогичным уравнению (140.1), где s=x:
х=Аcos(ω0t+φ). (141.1)
Согласно выражениям (140.4) и (140.5), скорость v и ускорение а колеблющейся точки соответственно равны
Сила F=ma, действующая на колеблющуюся материальную точку массой т, с учетом (141.1) и (141.2) равна
F= -mω20x.
Следовательно, сила пропорциональна смещению материальной точки из положения равновесия и направлена в противоположную сторону (к положению равновесия).
Кинетическая энергия материальной точки, совершающей прямолинейные гармонические колебания, равна
Потенциальная энергия материальной точки, совершающей гармонические колебания под действием упругой силы F, равна
Сложив (141.3) и (141.5), получим формулу для полной энергии:
Полная энергия остается постоянной, так как при гармонических колебаниях справедлив закон сохранения механической энергии, поскольку упругая сила консервативна.
Из формул (141.4) и (141.6) следует, что Т и П изменяются с частотой 2ω0, т. е. с частотой, которая в два раза превышает частоту гармонического колебания.
222
На рис. 200 представлены графики зависимости х, Т и П от времени. Так как <sin2α>= <cos2aα>=1/2, то из формул (141.3), (141.5) и (141.7) следует, что <Т> = <П>=1/2E.
17. Гармонический осциллятор.
Гармоническим осциллятором называется система, совершающая колебания, описываемые уравнением вида (140.6):
Колебания гармонического осциллятора являются важным примером периодического движения и служат точной или приближенной моделью во многих задачах классической и квантовой физики. Примерами гармонического осциллятора являются пружинный, физический и математический маятники, колебательный контур (для токов и напряжений столь малых, что элементы контура можно было бы считать линейными; см. §146).
18. Затухающие колебания
Рассмотрим свободные затухающие колебания — колебания, амплитуда которых из-за потерь энергии реальной колебательной системой с течением времени уменьшается. Простейшим механизмом уменьшения энергии колебаний является ее превращение в теплоту вследствие трения в механических колебательных системах,
а также омических потерь и излучения электромагнитной энергии в электрических колебательных системах.
Закон затухающих колебаний определяется свойствами колебательных систем. Обычно рассматривают линейные системы — идеализированные реальные системы, в которых параметры, определяющие физические свойства системы, в ходе процесса не изменяются. Линейными системами являются, например, пружинный маятник при малых растяжениях пружины (когда справедлив закон Гука), колебательный контур, индуктивность, емкость и сопротивление которого не зависят ни от тока в контуре, ни от напряжения. Различные по своей природе линейные системы описываются идентичными линейными дифференциальными уравнениями, что позволяет подходить к изучению колебаний различной физической природы с единой точки зрения, а также проводить их моделирование, в том числе и на ЭВМ.
Дифференциальное уравнение свободных затухающих колебаний линейной системы задается в виде
где s — колеблющаяся величина, описывающая тот или иной физический процесс, δ=const — коэффициент затухания, ω0 — циклическая частота свободных незатухающих колебаний той же колебательной системы, т. е. при δ=0 (при отсутствии потерь энергии) называется собственной частотой колебательной системы.
Решение уравнения (146.1) рассмотрим в виде
s=e-δu (146.2)
где u=u(t). После нахождения первой и второй производных выражения (146.2) и подстановки их в (146.1) получим
Решение уравнения (146.3) зависит от знака коэффициента перед искомой величиной. Рассмотрим случай, когда этот коэффициент положителен:
ω2=ω20-δ2 (146.4)
(если (ω2-δ2)>0, то такое обозначение мы вправе сделать). Тогда получим уравнение типа (142.1)
решением которого является функция и=А0cos(ωt+φ)
(см. (140.1)).
Таким образом, решение уравнения (146.1) в случае малых затуханий (δ2<<ω20)
s=A0е-δtсоs(ωt+φ), (146.5) где А=А0е-δt (146.6)
— амплитуда затухающих колебаний, а
a0 — начальная амплитуда. Зависимость (146.5) показана на рис.208 сплошной линией, а зависимость (146.6) — штриховыми линиями. Промежуток времени τ=1/δ, в течение которого амплитуда затухающих колебаний уменьшается в е раз, называется временем релаксации.
Затухание нарушает периодичность колебаний, поэтому затухающие колебания не являются периодическими и, строго говоря, к ним неприменимо понятие периода или частоты. Однако если затухание мало, то можно условно пользоваться понятием периода как промежутка времени между двумя последующими максимумами (или минимумами) колеблющейся физической величины (рис. 208). Тогда период затухающих колебаний с учетом формулы
(146.4) равен
Если A(t) и A(t+T)— амплитуды двух последовательных колебаний, соответствующих моментам времени, отличающимся на период, то отношение
называется декрементом затухания, а его
логарифм
— логарифмическим декрементом затухания; Ne — число колебаний, совершаемых за время уменьшения амплитуды в е раз. Логарифмический декремент затухания — постоянная для данной колебательной системы величина.
Для характеристики колебательной системы пользуются понятием добротности Q, которая при малых значениях логарифмического декремента равна
(так как затухание невелико (δ2<<ω20), то Т принято равным Т0).
Из формулы (146.8) следует, что добротность пропорциональна числу колебаний Ne, совершаемых системой за время релаксации.
Применим выводы, полученные для свободных затухающих колебаний линейных систем, для колебаний различной физической природы — механических (в качестве примера рассмотрим пружинный маятник) и электромагнитных (в качестве примера рассмотрим электрический колебательный контур).
1. Свободные затухающие колебания пружинного маятника. Для пружинного маятника (см. § 142) массой т, совершающего малые колебания под действием упругой силы F=-kx, сила трения пропорциональна скорости, т. е.
231
где r — коэффициент сопротивления; знак минус указывает на противоположные направления силы трения и скорости.
При данных условиях закон движения маятника будет иметь вид
Используя формулу ω0=√k/m (см. (142.2)) и принимая, что коэффициент затухания
δ=r/(2m), (146.10)
получим идентичное уравнению (146.1) дифференциальное уравнение затухающих колебаний, маятника:
Из выражений (146.1) и (146.5) вытекает, что маятник колеблется по закону
х=A0е-δtcos(ωt+φ) с частотой ω=√(ω20-r2/4m2) (см. (146.4)).
Добротность пружинного маятника,
согласно (146.8) и (146.10), Q=1/r√km.
19. Вынужденные колебания,
колебания, возникающие в какой-либо системе под действием переменной внешней силы (например, колебания мембраны телефона под действием переменного магнитного поля, колебания механической конструкции под действием переменной нагрузки и т.д.). Характер В. к. определяется как характером внешней силы, так и свойствами самой системы. В начале действия периодической внешней силы характер В. к. изменяется со временем (в частности, В. к. не являются периодическими), и лишь по прошествии некоторого времени в системе устанавливаются периодические В. к. с периодом, равным периоду внешней силы (установившиеся В. к.). Установление В. к. в колебательной системе происходит тем быстрее, чем больше затухание колебаний в этой системе.
В частности, в линейных колебательных системах при включении внешней силы в системе одновременно возникают свободные (или собственные) колебания и В. к., причём амплитуды этих колебаний в начальный момент равны, а фазы противоположны (рис.). После постепенного затухания свободных колебаний в системе остаются только установившиеся В. к.
Амплитуда В. к. определяется амплитудой действующей силы и затуханием в системе. Если затухание мало, то амплитуда В. к. существенно зависит от соотношения между частотой действующей силы и частотой собственных колебаний системы. При приближении частоты внешней силы к собственной частоте системы амплитуда В. к. резко возрастает — наступает резонанс. В нелинейных системах разделение на свободные и В. к. возможно не всегда.
20. Математический маятник
Математический маятник— это идеализированная система, состоящая из материальной точки массой т, подвешенной на нерастяжимой невесомой нити, и колеблющаяся под действием силы тяжести. Хорошим приближением математического маятника является небольшой тяжелый шарик, подвешенный на тонкой длинной нити.
Момент инерции математического маятника J=ml2, (142.8)
где l — длина маятника.
Так как математический маятник можно представить как частный случай физического маятника, предположив, что вся его масса сосредоточена в одной точке — центре масс, то, подставив выражение (142.8) в формулу (142.7), получим выражение для периода малых колебаний математического маятника
T=2π√l/g. (142.9)
Сравнивая формулы (142.7) и (142.9), видим, что если приведенная длина L физического маятника равна длине l математического маятника, то их периоды колебаний одинаковы. Следовательно, приведенная длина физического маятника — это длина такого математического маятника, период колебаний которого совпадает с периодом колебаний данного физического маятника.