Шпоры – 16-20

16. Динамика гармонических колебаний

Механические гармонические колебания

Пусть материальная точка совершает пря­молинейные гармонические колебания вдоль оси координат х около положения равновесия, принятого за начало коорди­нат. Тогда зависимость координаты х от времени t задается уравнением, аналогич­ным уравнению (140.1), где s=x:

х=Аcos(ω0t+φ). (141.1)

Согласно выражениям (140.4) и (140.5), скорость v и ускорение а колеблющейся точки соответственно равны

 

Сила F=ma, действующая на колеблю­щуюся материальную точку массой т, с учетом (141.1) и (141.2) равна

F= -mω20x.

Следовательно, сила пропорциональна смещению материальной точки из положе­ния равновесия и направлена в противопо­ложную сторону (к положению равнове­сия).

Кинетическая энергия материальной точки, совершающей прямолинейные гар­монические колебания, равна

Потенциальная энергия материальной точки, совершающей гармонические коле­бания под действием упругой силы F, равна

Сложив (141.3) и (141.5), получим форму­лу для полной энергии:

Полная энергия остается постоянной, так как при гармонических колебаниях спра­ведлив закон сохранения механической энергии, поскольку упругая сила консер­вативна.

Из формул (141.4) и (141.6) следует, что Т и П изменяются с частотой 2ω0, т. е. с частотой, которая в два раза превы­шает частоту гармонического колебания.

 

 

222

На рис. 200 представлены графики зави­симости х, Т и П от времени. Так как <sin2α>= <cos2aα>=1/2, то из формул (141.3), (141.5) и (141.7) следует, что <Т> = <П>=1/2E.

17. Гармонический осциллятор.

 

Гармоническим осциллятором называется система, совершающая колебания, описы­ваемые уравнением вида (140.6):

Колебания гармонического осциллятора являются важным примером периодиче­ского движения и служат точной или при­ближенной моделью во многих задачах классической и квантовой физики. При­мерами гармонического осциллятора яв­ляются пружинный, физический и матема­тический маятники, колебательный контур (для токов и напряжений столь малых, что элементы контура можно было бы считать линейными; см. §146).

18. Затухающие колебания

Рассмотрим свободные затухающие коле­бания — колебания, амплитуда которых из-за потерь энергии реальной колебатель­ной системой с течением времени умень­шается. Простейшим механизмом умень­шения энергии колебаний является ее пре­вращение в теплоту вследствие трения в механических колебательных системах,

а также омических потерь и излучения электромагнитной энергии в электриче­ских колебательных системах.

Закон затухающих колебаний опреде­ляется свойствами колебательных систем. Обычно рассматривают линейные систе­мы — идеализированные реальные систе­мы, в которых параметры, определяющие физические свойства системы, в ходе про­цесса не изменяются. Линейными система­ми являются, например, пружинный маят­ник при малых растяжениях пружины (когда справедлив закон Гука), колеба­тельный контур, индуктивность, емкость и сопротивление которого не зависят ни от тока в контуре, ни от напряжения. Различ­ные по своей природе линейные системы описываются идентичными линейными дифференциальными уравнениями, что по­зволяет подходить к изучению колебаний различной физической природы с единой точки зрения, а также проводить их моде­лирование, в том числе и на ЭВМ.

Дифференциальное уравнение свобод­ных затухающих колебаний линейной системы задается в виде

где s — колеблющаяся величина, описы­вающая тот или иной физический про­цесс, δ=const — коэффициент затухания, ω0 — циклическая частота свободных не­затухающих колебаний той же колебатель­ной системы, т. е. при δ=0 (при отсутствии потерь энергии) называется собственной частотой колебательной системы.

Решение уравнения   (146.1)   рассмот­рим в виде

s=e-δu (146.2)

где u=u(t). После нахождения первой и второй производных выражения (146.2) и подстановки их в (146.1) получим

Решение уравнения (146.3) зависит от знака коэффициента перед искомой вели­чиной. Рассмотрим случай, когда этот ко­эффициент положителен:

ω2=ω20-δ2 (146.4)

(если (ω2-δ2)>0, то такое обозначение мы вправе сделать). Тогда получим урав­нение типа (142.1)

решением которого является функция и=А0cos(ωt+φ)

(см. (140.1)).

Таким образом, решение уравнения (146.1) в случае малых затуханий (δ2<<ω20)

s=A0е-δtсоs(ωt+φ),       (146.5) где А=А0е-δt (146.6)

— амплитуда  затухающих   колебаний,   а

a0 — начальная амплитуда. Зависимость (146.5) показана на рис.208 сплошной линией, а зависимость (146.6) — штри­ховыми линиями. Промежуток времени τ=1/δ, в течение которого амплитуда за­тухающих колебаний уменьшается в е раз, называется временем релаксации.

Затухание нарушает периодичность колебаний, поэтому затухающие колеба­ния не являются периодическими и, строго говоря, к ним неприменимо понятие перио­да или частоты. Однако если затухание мало, то можно условно пользоваться по­нятием периода как промежутка времени между двумя последующими максимума­ми (или минимумами) колеблющейся фи­зической величины (рис. 208). Тогда пери­од затухающих колебаний с учетом формулы

(146.4) равен

 

Если A(t) и A(t+T)— амплитуды двух последовательных колебаний, соответству­ющих моментам времени, отличающимся на период, то отношение

называется декрементом затухания, а его

логарифм

— логарифмическим декрементом затуха­ния; Ne — число колебаний, совершаемых за время уменьшения амплитуды в е раз. Логарифмический декремент затухания — постоянная для данной колебательной системы величина.

Для характеристики колебательной системы пользуются понятием добротно­сти Q, которая при малых значениях лога­рифмического декремента равна

(так как затухание невелико (δ2<<ω20), то Т принято равным Т0).

Из формулы (146.8) следует, что до­бротность пропорциональна числу колеба­ний Ne, совершаемых системой за время релаксации.

Применим выводы, полученные для свободных затухающих колебаний линей­ных систем, для колебаний различной фи­зической природы — механических (в ка­честве примера рассмотрим пружинный маятник) и электромагнитных (в качестве примера рассмотрим электрический коле­бательный контур).

1. Свободные затухающие колебания пружинного маятника. Для пружинного маятника (см. § 142) массой т, совершаю­щего малые колебания под действием уп­ругой силы F=-kx, сила трения про­порциональна скорости, т. е.

231

где r — коэффициент сопротивления; знак минус указывает на противоположные на­правления силы трения и скорости.

При данных условиях закон движения маятника будет иметь вид

Используя формулу ω0=√k/m (см. (142.2)) и принимая, что коэффици­ент затухания

δ=r/(2m), (146.10)

получим идентичное уравнению (146.1) дифференциальное уравнение затухающих колебаний, маятника:

Из выражений (146.1) и (146.5) вытекает, что маятник колеблется по закону

х=A0е-δtcos(ωt+φ) с        частотой        ω=√(ω20-r2/4m2)    (см. (146.4)).

Добротность    пружинного    маятника,

согласно (146.8) и (146.10), Q=1/r√km.

19. Вынужденные колебания,

колебания, возникающие в какой-либо системе под действием переменной внешней силы (например, колебания мембраны телефона под действием переменного магнитного поля, колебания механической конструкции под действием переменной нагрузки и т.д.). Характер В. к. определяется как характером внешней силы, так и свойствами самой системы. В начале действия периодической внешней силы характер В. к. изменяется со временем (в частности, В. к. не являются периодическими), и лишь по прошествии некоторого времени в системе устанавливаются периодические В. к. с периодом, равным периоду внешней силы (установившиеся В. к.). Установление В. к. в колебательной системе происходит тем быстрее, чем больше затухание колебаний в этой системе.

 

  В частности, в линейных колебательных системах при включении внешней силы в системе одновременно возникают свободные (или собственные) колебания и В. к., причём амплитуды этих колебаний в начальный момент равны, а фазы противоположны (рис.). После постепенного затухания свободных колебаний в системе остаются только установившиеся В. к.

 

  Амплитуда В. к. определяется амплитудой действующей силы и затуханием в системе. Если затухание мало, то амплитуда В. к. существенно зависит от соотношения между частотой действующей силы и частотой собственных колебаний системы. При приближении частоты внешней силы к собственной частоте системы амплитуда В. к. резко возрастает — наступает резонанс. В нелинейных системах разделение на свободные и В. к. возможно не всегда.

20. Математический маятник

Математический маятник— это идеализированная система, состоящая из материальной точки массой т, подвешен­ной на нерастяжимой невесомой нити, и колеблющаяся под действием силы тя­жести. Хорошим приближением математи­ческого маятника является небольшой тя­желый шарик, подвешенный на тонкой длинной нити.

Момент инерции математического маятника J=ml2, (142.8)

где l — длина маятника.

Так как математический маятник мож­но представить как частный случай физи­ческого маятника, предположив, что вся его масса сосредоточена в одной точке — центре масс, то, подставив выражение (142.8) в формулу (142.7), получим вы­ражение для периода малых колебаний математического маятника

T=2π√l/g. (142.9)

Сравнивая формулы (142.7) и (142.9), видим, что если приведенная длина L фи­зического маятника равна длине l матема­тического маятника, то их периоды коле­баний одинаковы. Следовательно, приве­денная длина физического маятника — это длина такого математического маятни­ка, период колебаний которого совпадает с периодом колебаний данного физическо­го маятника.