Шпоры – 31-35

31. Барометрическая формула. Распределение Больцмана

При выводе основного уравнения молекулярно-кинетической теории газов и макcсвелловского распределения молекул по скоростям предполагалось, что на молеку­лы газа внешние силы не действуют, по­этому молекулы равномерно распределены по объему. Однако молекулы любого газа находятся в потенциальном поле тяготе­ния Земли. Тяготение, с одной стороны, и тепловое движение молекул — с другой, приводят к некоторому стационарному со­стоянию газа, при котором давление газа с высотой убывает.

Выведем закон изменения давления с высотой, предполагая, что поле тяготе­ния однородно, температура постоянна и масса всех молекул одинакова. Если атмосферное давление на высоте А равно р (рис. 67), то на высоте h + dh оно равно p+dp (при dh>0 dp<0, так как давле­ние с высотой убывает). Разность давле­ний р и p + dp равна весу газа, заклю­ченного в объеме цилиндра высотой Ah с основанием площадью, равной единице площади:

р-(p+dp)=ρgh,

 

где ρ — плотность газа на высоте h (dh настолько мало, что при изменении высоты в этом пределе плотность газа можно счи­тать постоянной). Следовательно,

dр=-ρgdh. (45.1)

Воспользовавшись уравнением состоя­ния идеального газа pV = (m/M)RT (т — масса газа, М—молярная масса газа),

 

находим, что

Подставив  это  выражение   в   (45.1), получим

С изменением высоты от h1 до h2. дав­ление изменяется от р1 до p2 (рис. 67), т. е.

Выражение (45.2) называется барометри­ческой формулой. Она позволяет найти атмосферное давление в зависимости от высоты или, измерив давление, найти вы­соту. Так как высоты обозначаются отно­сительно уровня моря, где давление счита­ется нормальным, то выражение (45.2) может быть записано в виде

где р — давление на высоте h.

Прибор для определения высоты над земной поверхностью называется высото­мером (или альтиметром). Его работа ос­нована на использовании формулы (45.3). Из этой формулы следует, что давление с высотой убывает тем быстрее, чем тяже­лее газ.

Барометрическую формулу (45.3) можно преобразовать, если воспользо­ваться выражением (42.6) p=nkT:

где n — концентрация молекул на высо­те h, n0 — то же на высоте h=0. Так как M = m0NA (NA— постоянная Авогадро, m0 —масса одной молекулы), а R=kNA, то

где    m0gh=П — потенциальная    энергия молекулы в поле тяготения, т. е.

Выражение (45.5) называется распре­делением Больцмана во внешнем потенци­альном поле. Из него следует, что при постоянной температуре плотность газа больше там, где меньше потенциальная энергия его молекул.

Если частицы имеют одинаковую мас­су и находятся в состоянии хаотического теплового движения, то распределение Больцмана (45.5) справедливо в любом внешнем потенциальном поле, а не только в поле сил тяжести.

32. Опыты Перрена Опытное определение постоянной Авогадро.

Воспользовавшись идеей рас­пределения молекул по высоте (см. форму­лу

(45.4)), французский ученый Ж Перрен (1870—1942) экспериментально опре­делил постоянную Авогадро. Исследуя под микроскопом броуновское движение, он убедился, что броуновские частицы рас­пределяются по высоте подобно молекулам газа в поле тяготения. Применив к ним больцмановское распределение, можно за­писать

где m—масса частицы, m1 — масса вы­тесненной ею жидкости: m=4/3πr3ρ, m1 = 4/3πr3ρ1 (r — радиус частицы, ρ— плотность частицы, ρ1 — плотность жидко­сти).

Если n1  и n2 — концентрации частиц на уровнях h1 и h2, a k=R/NA, то

Значение Na, получаемое из работ Ж. Перрена, соответствовало значениям, полученным в других опытах, что под­тверждает применимость к броуновским частицам распределения (45.4).

33. Длина свободного пробега молекул

Молекулы газа, находясь в состоянии хао­тического движения, непрерывно сталки­ваются друг с другом. Между двумя по­следовательными столкновениями молеку­лы проходят некоторый путь l, который называется длиной свободного пробега. В общем случае длина пути между по­следовательными столкновениями различ­на, но так как мы имеем дело с огромным числом молекул и они находятся в бес­порядочном движении, то можно говорить о средней длине свободного пробега моле­кул <l>.

Минимальное расстояние, на которое сближаются при столкновении центры двух молекул, называется эффективным диаметром молекулы d (рис.68). Он за­висит от скорости сталкивающихся моле­кул, т. е. от температуры газа (несколько уменьшается с ростом температуры).

 

Так как за 1 с молекула проходит в среднем путь, равный средней арифметической скорости <v>, и если (z) —сред­нее число столкновений, испытываемых одной молекулой газа за 1 с, то средняя длина свободного пробега

<l>=<v>/<z>.

Для определения <z> представим себе молекулу в виде шарика диаметром d, которая движется среди других «застыв­ших» молекул. Эта молекула столкнется только с теми молекулами, центры кото­рых находятся на расстояниях, рав­ных или меньших d, т. е. лежат внутри «ломаного» цилиндра радиусом d (рис. 69).

Среднее число столкновений за 1 с равно числу молекул в объеме «ломано­го» цилиндра:

<z>=nV,

где n — концентрация молекул, V = = πd2<v> (<v> —средняя скорость мо­лекулы или путь, пройденный ею за 1с). Таким образом, среднее число столкновений

<z>=nπd2<v>.

Расчеты показывают, что при учете дви­жения других молекул

Тогда   средняя   длина   свободного   про­бега

т.е. (l) обратно пропорциональна кон­центрации n молекул. С другой стороны, из (42.6) следует, что при постоянной температуре n пропорциональна давлению р. Следовательно,

34. Диффузия газов.

Диффузия. Явление диффузии за­ключается в том, что происходит самопро­извольное проникновение и перемешива­ние частиц двух соприкасающихся газов, жидкостей и даже твердых тел; диффузия сводится к обмену масс частиц этих тел, возникает и продолжается, пока су­ществует градиент плотности. Во время становления молекулярно-кинетической теории по вопросу диффузии возникли противоречия. Так как молекулы движутся с огромными скоростями, диффузия до­лжна происходить очень быстро. Если же открыть в комнате сосуд с пахучим ве­ществом, то запах распространяется дово­льно медленно. Однако противоречия здесь нет. Молекулы при атмосферном давлении обладают малой длиной свобод­ного пробега и, сталкиваясь с другими молекулами, в основном «стоят» на месте.

Явление диффузии для химически од­нородного газа подчиняется закону Фика:

jm=-Ddp/dx (48.3)

где jт — плотность потока массы — ве­личина, определяемая массой вещества, диффундирующего в единицу времени че­рез единичную площадку, перпендикуляр­ную оси х, D — диффузия (коэффициент диффузии),    dρ/dx—градиент     плотности,

равный скорости изменения плотности на единицу длины х в направлении нормали к этой площадке. Знак минус показывает, что перенос массы происходит в направле­нии убывания плотности (поэтому знаки jт

иdρ/dx противоположны). Диффузия D численно равна плотности потока массы при градиенте плотности, равном единице. Согласно кинетической теории газов,

D=1/3 <v> <l>. (48.4)

35. Вязкость газов

Внутреннее трение (вязкость). Ме­ханизм возникновения внутреннего трения между параллельными слоями газа (жид­кости), движущимися с различными ско­ростями, заключается в том, что из-за хаотического теплового движения проис­ходит обмен молекулами между слоями, в результате чего импульс слоя, движущегося быстрее, уменьшается, движущегося медленнее — увеличивается, что приводит к торможению слоя, движущегося быстрее, и ускорению слоя, движущегося медленнее.

Согласно формуле (31.1), сила внут­реннего трения между двумя слоями газа (жидкости) подчиняется закону Ньютона:

где    η — динамическая    вязкость     (вязкость), dv/dx — градиент скорости, показывающий быстроту изменения скорости в направлении х, перпендикулярном на­правлению движения слоев, S — площадь, на которую действует сила F.

Взаимодействие двух слоев согласно второму закону Ньютона можно рассмат­ривать как процесс, при котором от од­ного слоя к другому в единицу времени передается импульс, по модулю равный действующей силе. Тогда выражение (48.5) можно представить в виде

где jp — плотность потока импульса — ве­личина, определяемая полным импульсом, переносимым в единицу времени в поло­жительном направлении оси х через еди­ничную площадку, перпендикулярную оси

х, dv/dx— градиент скорости.  Знак  минус указывает, что импульс переносится в на­правлении убывания скорости (поэтому

dv знаки jp и dv/dx  противоположны), Динамическая вязкость η численно равна плотности потока импульса при гра­диенте скорости, равном единице; она вы­числяется по формуле

Из сопоставления формул (48.1), (48.3) и (48.6), описывающих явления переноса, следует, что закономерности всех явлений переноса сходны между со­бой. Эти законы были установлены задол­го до того, как они были обоснованы

 

 

85

и выведены из молекулярно-кинетической теории, позволившей установить, что внешнее сходство их математических вы­ражений обусловлено общностью лежаще­го в основе явлений теплопроводности, диффузии и внутреннего трения молеку­лярного механизма перемешивания моле­кул в процессе их хаотического движения и столкновений друг с другом.

Рассмотренные законы Фурье, Фика и Ньютона не вскрывают молекулярно-кинетического смысла коэффициентов λ, D и η. Выражения для коэффициентов переноса выводятся из кинетической тео­рии. Они записаны без вывода, так как строгое рассмотрение явлений переноса довольно громоздко, а качественное — не имеет смысла. Формулы (48.2), (48.4) и (48.7) связывают коэффициенты перено­са и характеристики теплового движения молекул. Из этих формул вытекают про­стые зависимости между λ, D и η:

Используя эти формулы, можно по най­денным из опыта одним величинам опреде­лить другие.