методы оценки погрешностей прямых и косвенных измерений – ПРИЛОЖЕНИЕ 3

ПРИЛОЖЕНИЕ 3

Некоторые сведения о погрешностях измерений и записи результата

1. Случайные и систематические погрешности

Говоря о погрешностях измерений, следует, прежде всего, упомянуть о грубых погрешностях (промахах), возникающих вследствие недосмотра экспериментатора или неисправности аппаратуры. Такие ошибки происходят, если, например, экспериментатор неправильно прочтет номер деления на шкале, если в электрической цепи произойдет замыкание и вследствие других подобных причин. Грубых ошибок следует избегать.Если установлено, что они произошли, соответствующие измерения нужно отбрасывать.

Не связанные с грубыми ошибками погрешности опыта делятся на случайные и систематические. Многократно повторяя одни и те же измерения, можно заметить, что довольно часто их результаты не в точности равны друг другу, а «пляшут» вокруг некоторого среднего.Погрешности, меняющие величину и знак от опыта к опыту, называют случайными.

 

Случайные погрешности могут быть связаны с сухим трением (из-за которого стрелка прибора вместо того, чтобы останавливаться в правильном, положении, «застревает» вблизи него), с люфтами в механических приспособлениях, с тряской, которую в городских условиях трудно исключить, с несовершенством объекта измерений (например, при измерении диаметра проволоки, которая из-за случайных причин, возникающих при изготовлении, имеет не вполне круглое сечение) или с особенностями самой измеряемой величины. Рассмотрим последний случай.

Пусть мы измеряем число космических частиц, проходящих в минуту через счетчик. При достаточно больших размерах счетчика это число может составлять несколько сот или даже тысяч. Пусть в первую минуту через счетчик прошло 345 частиц. Повторяя измерение, найдем, что в разных опытах получаются разные числа (вообще говоря, не слишком отличающиеся от 345). Это происходит потому, что в нашем случае число частиц, проходящих в минуту через счетчик, является случайной величиной. Космическое излучение правильно характеризовать не числом частиц, которые прошли через счетчик за выбранную минуту, а средним числом частиц, проходящих в минуту через счетчик, и средним отклонением чисел в различных опытах.

Не следует думать, что прохождение космических частиц через счетчик представляет собой исключительное явление. Подобный разброс результатов измерения наблюдается при изучении (с помощью счетчиков) числа распадов в радиоактивных источниках, при изучении очень слабых токов, когда через измерительный прибор за время измерения проходит не очень большое число электронов или ионов (например, в чувствительных масс-спектрометрах), и во многих других случаях.

Случайные погрешности эксперимента исследуются путем сравнения результатов, полученных при нескольких опытах, поставленных в одинаковых условиях.Два-три измерения следует производить всегда. Если результаты совпали, то на этом следует остановиться. Если же они расходятся, нужно попытаться понять причину расхождения. Часто она связана с тем, что прибор неисправен, ненадежно закреплен или плохо смазан, что электрические контакты не пропаяны или недостаточно зажаты. В этом, случае,прежде всего, нужно попытаться исправить аппаратуру. Если устранить причину не удается, нужно произвести несколько измерений и записать все полученные результаты. Ниже мы рас скажем о том, как следует поступать с полученными числами.

Систематические погрешности сохраняют свою величину (и знак!) во время эксперимента. Они могут быть связаны с ошибками приборов (неправильная шкала, неравномерно растягивающаяся пружина, неравномерный шаг микрометрического винта, не равные плечи весов) и с самой постановкой опыта (определение скорости поезда по проходимому им расстоянию на участке, где движение происходит с небольшим ускорением, которое ускользнуло от внимания экспериментатора, влияние трения и т. д.). В результате систематических погрешностей разбросанные из-за случайных ошибок результаты опыта колеблются не вокруг истинного, а вокруг некоторого смещенного значения.

В ситуации, изображенной на рис. 2а), систематическая погрешность пренебрежимо мала. Измеренные значения отличаются от истинного вследствие случайных ошибок опыта. На рис. 2б) изображены результаты опыта при наличии как случайных, так и систематических погрешностей.

При желании систематические погрешности опыта могут быть, изучены и скомпенсированы путем внесения поправок в результаты измерений. Неравноплечность весов можно исследовать, меняя местами грузы на чашках весов. Неточность шкал электроизмерительных приборов можно установить, сравнивая их показания с показаниями более точных приборов, и т. д. Как правило, этого не делают. Если систематическая погрешность опыта для выбранной цели слишком велика, то обычно оказывается проще поставить новые, более точные приборы, чем исследовать погрешности старых.

Не следует думать, что различие между случайными и систематическими погрешностями является абсолютным. Оно связано с постановкой опыта. Проводя измерения тока не одним, а несколькими разными амперметрами, мы превращаем систематическую ошибку, связанную с неточностью шкалы, в случайную ошибку, величина (и знак!) которой зависит от того, какой поставлен амперметр в данном опыте и т. д. Однако во всяком данном опыте— при заданной его постановке — различие между систематическими и случайными погрешностями всегда можно и нужно устанавливать с полной определенностью.

2. Случайные погрешности

Случайные величины, к которым относятся случайные погрешности, изучаются в теории вероятностей и в математической статистике. Мы здесь опишем — с пояснениями, но без доказательств — основные свойства и основные правила обращения с такими величинами в том объеме, который необходим для обработки результатов измерений, полученных в лаборатории. В этом параграфе мы будем предполагать, что систематические погрешности пренебрежимо малы и все ошибки сводятся к случайным. Позднее, мы обсудим, как следует поступать в тех случаях, когда нужно принимать во внимание как случайные, так и систематические погрешности опыта.

Рассмотрим для примера данные, полученные при измерении массы тела на весах, у которых имеется область застоя из-за трения призмы (разброс результатов для наглядности преувеличен). Пусть масса тела близка к 48 мг, результат измерений удается отсчитать по шкале с погрешностью до 0,1 мг. Имеем:

Таблица 4

опыта

1

2

3

4

5

6

7

8

9

10

11

Масса,

мг

48.0

47.9

47.5

48.2

48.4

47.8

48.6

48.3

47.8

48.1

48.2

 

Вместо одного нужного нам результата мы получили одиннадцать. Что делать с полученными цифрами? Как найти из них достаточно близкое к истинному значение массы тела и как оценить погрешность полученного результата? Этот вопрос подробно изучается в математической статистике. Мы здесь изложим соответствующие правила без вывода.

В качестве наилучшего значения для измеренной величины обычно принимают среднее арифметическое из всех полученных результатов;

 

                               (1)

В нашем случае получим

мг.

Этому результату следует приписать погрешность, определяемую формулой

 

                       (2)

 

В нашем случае

мг.

Результат опыта записывается в виде

                                       (3)

В нашем случае т = (48,1 ± 0,1) мг.

Рассмотрим формулы (1) и (2.). Прежде всего, попытаемся понять, как зависит результат расчета от числа измерений. Формула (1) показывает, чтохср от числа измерений зависит слабо. Все слагаемые, входящие в числитель, приблизительно равны друг другу. Их сумма пропорциональна числу слагаемых. После деления на знаменатель получается величина, мало зависящая от числа измерений. Так, конечно, и должно быть. Среднее измеренное значение – при правильной методике опыта— всегда лежит вблизи истинного значения и в разных независимых сериях измерений испытывает вокруг него небольшие случайные колебания.

Погрешность опыта, определяемая формулой (2), с увеличением числа измерений п уменьшается как :

~1/.

Число членов суммы в (4) растет как п, числитель (4) поэтому увеличивается как , а все выражение уменьшается как . Этот результат является очень важным. По мере увеличения числа опытов ошибки в сторону преувеличения и преуменьшения: результата все лучше компенсируют друг друга, и среднее значение приближается к истинному. В нашем примере одиночные отсчеты отличаются от среднего на несколько десятых, а погрешность результата, полученного при усреднении всех измерений, составляет всего одну десятую.

Формула (2) может быть записана в несколько ином виде:

При такой записи множитель 1/, определяющий улучшение результата с увеличением числа измерений, вынесен из-под общего корня, а под корнем осталось среднее значение квадрата отклонений, вычисленное по всем произведенным измерениям. Этот корень определяетσ(1) – среднюю квадратичную погрешность одиночного измерения.

При обсуждении смысла величины σ следует помнить, что истинную величину погрешности невозможно узнать до тех пор, пока из каких-либо других опытов (или соображений) не удастся определить искомую величину с существенно лучшей точностью. Но тогда рассматриваемые опыты потеряют значение, и их погрешность никого не будет интересовать.

Погрешность результата не столько определяют, сколько оценивают. Оценка (2) подобрана так, что при проведении многочисленных серий измерений погрешность в 2/3 случаев оказывается меньшеσ, а в 1/3 случаев больше, чем σ.

Иначе говоря, если бы мы — в нашем случае — провели не одну серию из 11 взвешиваний, а десять таких серий, то мы могли бы ожидать, что в шести или семи из них усредненный результат будет отличаться от истинной массы тела меньше чем на 0,1 мг. а в остальных случаях больше чем на 0,1 мг.

Как правило, погрешность опыта в 32% больше ±σ. Эту погрешность, обычно называют стандартной  (или среднеквадратичной)  погрешностью опытов, а ее квадрат – дисперсией. В 5% случаев погрешность опыта превосходит ±2σ и только в 0,3% оказываются больше ±3σ.

На первый взгляд из сказанного можно сделать вывод, что, беспредельно увеличивая число измерений, можно даже с самой примитивной аппаратурой получить очень хорошие результаты. Это, конечно, не так. С увеличением числа измерений уменьшается только случайная погрешность опытов. Методические погрешности и другие систематические погрешности (например, с неправильностью их шкалы приборов), при увеличении числа опытов не меняются. В приведенном выше примере результат взвешивания округлялся до десятых долей миллиграмма. Это делалось потому, что сотых долей отсчитать было нельзя. Одна только ошибка отсчета составляет при этом около 0,1 мг. Поэтому погрешность результата ни при каком числе опытов не может быть сделана меньше. Число опытов в нашем случае было выбрано разумно. Из приведенных в таблице цифр ясно, что при однократном измерении мы могли ошибиться на несколько десятых. Среди цифр встречаются результаты, отличающиеся на 0,3 и даже на 0,5 от среднего. После усреднения по 11 измерениям погрешность существенно уменьшилась. Но если окажется нужным узнать массу тела с лучшей, чем это мы сделали, точностью, то недостаточно просто увеличить число измерений. Придется взять более точные весы, позволяющие производить измерения не до десятых, а, скажем, до сотых долей миллиграмма.

3. Систематические погрешности

Оценку систематических погрешностей экспериментатор производит, анализируя особенности метода, теоретическую модель опыта, паспортную точность приборов и производя контрольные опыты.

Говоря о систематических погрешностях опыта, следует сказать несколько слов об ошибке отсчета «на глаз». Большинство приборов не имеет нониусных шкал. При этом доли деления отсчитываются на глаз. Эта ошибка составляет 1–2 десятых доли деления. При отсчетах следует следить за тем, чтобы луч зрения был перпендикулярен шкале. Для облегчения установки глаза на многих приборах устанавливается зеркало (зеркальные приборы). Глаз экспериментатора установлен правильно, если, стрелка прибора закрывает свое изображение в зеркале. При работе с электроизмерительными приборами отсчет должен включать число целых делений и число десятых долей деления, если отсчет может быть произведен с этой погрешностью  (если стрелка или зайчик не ходят и не дрожат).

Поясним указанное правило. Шкалы электроизмерительных приборов обычно изготовляют так, что одно деление шкалы приблизительно равно максимальной погрешности прибора. Зачем же в этом случае отсчитывать десятые доли деления? Забегая вперед, отметим, что при измерениях, при расчетах и при записи результатов, кроме надежно известных значащих цифр, всегда указывается одна лишняя. Такая процедура, среди прочих, имеет и то преимущество, что позволяет вовремя замечать мелкие нерегулярности исследуемых зависимостей. Если, например, стрелка прибора при измерениях отклонилась на полделения назад, этот результат является надежным и в том случае, когда погрешность прибора равна целому делению.

Несколько слов о точности линеек. Металлические линейки очень точны: миллиметровые деления наносятся с погрешностью не более ±0,05 мм, а сантиметровые– не хуже, чем с погрешностью 0,1 мм. Погрешность измерений, производимых с помощью таких линеек, практически равна погрешности отсчета на глаз. Деревянными или пластиковыми линейками лучше не пользоваться: их погрешности неизвестны и могут оказаться неожиданно большими.

Отметим различие в правилах определения погрешностей и в определении класса точности. Погрешности принято характеризовать среднеквадратичными ошибками. При многочисленных измерениях реальная ошибка опытов только в 68% случаев меньше среднеквадратичной, а в 32% случаев превосходит ее.

Класс точности определяет максимально возможное значение погрешности. Класс электроизмерительных приборов определяет максимальную погрешность, величина которой не меняется при переходе от начала к концу шкалы. Относительная ошибка при этом резко меняется, поэтому приборы обеспечивают хорошую точность при отклонении стрелки почти на всю шкалу и не дают ее при измерениях в начале шкалы. Отсюда следует рекомендация:выбирать прибор (или шкалу многошкального прибора) так, чтобы стрелка прибора при измерениях заходила за середину шкалы.

4. Сложение случайных и систематических погрешностей

В реальных опытах присутствуют как систематические, так и случайные ошибки. Пусть они характеризуются стандартными погрешностямиσсист и σслуч. Суммарная погрешность находится по формуле

                       (4)

Поясним эту формулу. Систематическая и случайная ошибки могут, в зависимости от случая, складываться или вычитаться друг из друга. Как уже говорилось, точность опытов принято характеризовать не максимальной (и не минимальной), а среднеквадратичной погрешностью. Поэтому правильно рассчитанная погрешность должна быть меньше суммыσслуч + σсист и больше их разности |σслуч – σсист|. Легко видеть, что σполн, определенная формулой (4), удовлетворяет этому условию. Поэтому

Знак равенства возникает только в том случае, когда одна из погрешностей равна нулю. Аналогично имеем

Формула (4) показывает, что при наличии как случайной, так и систематической погрешности полная ошибка опыта больше, чем каждая, из них в отдельности, что также является вполне естественным.

Обратим внимание на важную особенность формулы (4). Пусть одна из ошибок, например σслуч, в 2 раза меньше другой – в нашем случае σсист. Тогда

Погрешности редко удается оценить лучше 20%. Но в нашем примере с погрешностью 20% σполн≈σсист. Таким образом, меньшая погрешность почти ничего не добавляет к большей, даже если она составляет половину от нее. Этот вывод очень важен. В том случае, если случайная ошибка опытов хотя бы вдвое меньше систематической, нет смысла производить многократные измерения, так как полная погрешность опыта при этом практически не уменьшается. Измерения достаточно произвести 2–3 раза, чтобы убедиться, что случайная ошибка действительно мала.

 

Схему сложения погрешностей поясняет рис.3. Полная погрешность равна гипотенузе треугольника, катеты которого равны σслуч. и σсист.

 

Рис.3. Сложение погрешностей

5. Запись результатов. Точность расчетов

Результат измерения записывается в виде, определяемом формулой (3). Запись т=0,876 ± 0,008 г означает, что в результате измерений для массы тела найдено значение 0,876 г со стандартной погрешностью 0,008 г. Подразумевается, что при вычислении стандартной погрешности учтены как случайные, так и систематические ошибки.

При записи погрешности следует округлять ее величину до двух значащих цифр, если первая из них является единицей, и до одной значащей цифры во всех остальных случаях. Так, правильно писать ±3; ±0,2; ±0,08; ±0,14 и не следует писать ±3,2; ±0,23; ±0,084. Не следует также округлять ±0,14 до ±0,1.

Поясним это правило. Как мы уже говорили, погрешность эксперимента редко удается определить с погрешностью  лучше 20%. Если вычисление стандартной ошибки приводит к 0,14, то округление 0,14 до 0,1 изменяет величину погрешности на целых 40%, в то время как округление до 0,3 числа 0,26 или 0,34 изменяет погрешность менее чем на 15%, т. е. несущественно.

При записи измеренного значения последней должна указываться цифра того десятичного разряда, который использован при указании, погрешности. Так, один и тот же результат, в зависимости от погрешности, запишется в виде: 1,2 ±0,2; 1,24 ±0,03; 1,243 ±0,012 и т. д. Таким образом, последняя из указанных цифр (или даже две из них, как в последнем примере) оказывается сомнительной, а остальные– достоверными.

Сформулированное правило следует применять и в тех случаях, когда некоторые из цифр являются нулями. Если при измерении получен результатт = 0,900 + 0,004 г, то писать нули в конце числа 0,900 необходимо. Запись m= 0,9 означала бы, что о следующих значащих цифрах ничего не известно, в то время как измерения показали, что они равны нулю. Аналогичным образом, если масса тела равна 58,3 кг (с погрешностью в десятых долях килограмма), то не следует писать, что она равна 58300 г, так как эта запись означала бы, что тело взвешено с погрешностью  несколько граммов. Если результат взвешивания должен быть выражен в граммах, то в нашем случае нужно писать 5,83⋅104 г.

Необходимая точность расчетов определяется тем, что расчет не должен вносить в измерения дополнительной погрешности. Обычно в промежуточных расчетах сохраняется один, лишний знак, который в дальнейшем – при записи окончательного результата – будет отброшен.