Площадь поверхности. Поверхностный интеграл первого рода

Лекция 12.Площадь поверхности. Поверхностный интеграл первого рода, его свойства, геометрический и физический смысл. Вычисление поверхностного интеграла первого рода.

Если при определении длины кривой она задавалась как предел вписанной в данную кривую ломаной при стремлении к нулю длины наибольшего ее отрезка, то попытка распространить это определение на площадь криволинейной поверхности может привести к противоречию (пример Шварца: можно рассмотреть последовательность вписанных в цилиндр многогранников, у которых наибольшее расстояние между точками какой-либо грани стремится к нулю, а площадь стремится к бесконечности). Поэтому определим площадь поверхности иным способом. Рассмотрим незамкнутую поверхность S, ограниченную контуром L, и разобьем ее какими-либо кривыми на части S1, S2,…, Sn. Выберем в каждой части точку Mi и спроектируем эту часть на касательную плоскость к поверхности, проходящую через эту точку. Получим в проек-ции плоскую фигуру с площадью Ti. Назовем ρ наибольшее расстояние между двумя точками любой части поверхности S.

Определение 12.1. Назовем площадью S поверхности предел суммы площадей Ti при

:

                         .                                                                         (12.1)

 

 

Поверхностный интеграл первого рода.

 

Рассмотрим некоторую поверхность S, ограниченную контуром L, и разобьем ее на части S1, S2,…, Sп (при этом площадь каждой части тоже обозначим Sп). Пусть в каждой точке этой поверхности задано значение функции f(x, y, z). Выберем в каждой части Si точку Mi (xi, yi, zi) и составим интегральную сумму

                      .                                     (12.2)

Определение 12.2. Если существует конечный предел при интегральной суммы (12.2), не зависящий от способа разбиения поверхности на части и выбора точек Mi, то он называется поверхностным интегралом первого рода от функ-ции f(M) = f(x, y, z) по поверхности S и обозначается

              .                              (12.3)

Замечание. Поверхностный интеграл 1-го рода обладает обычными свойствами интегралов (линейность, суммирование интегралов от данной функции по отдельным частям рассматриваемой поверхности и т.д.).

 

               Геометрический  и физический смысл поверхностного интеграла 1-го рода.

 

Если подынтегральная функция f(M) ≡ 1, то из определения 12.2 следует, что равен площади рассматриваемой поверхности S.

Если же считать, что f(M) задает плотность в точке М поверхности S, то масса этой поверхности равна

                     .                                                                        (12.4)

 

                   Вычисление поверхностного интеграла 1-го рода.

 

Ограничимся случаем, когда поверхность S задается явным образом, то есть уравне-нием вида z = φ(x, y). При этом из определения площади поверхности следует, что

Si = , где Δσi – площадь проекции Si на плоскость Оху, а γi – угол между осью Oz и нормалью к поверхности S в точке Mi. Известно, что

              ,

где (xi, yi, zi) – координаты точки Mi. Cледовательно,

                .

Подставляя это выражение в формулу (12.2), получим, что

     ,

где суммирование справа проводится по области Ω плоскости Оху, являющейся проекцией на эту плоскость поверхности S (рис.1).

При этом в правой части получена интегральная сумма для функции двух переменных по плоской области, которая в пределе при дает двойной интеграл Таким образом, получена формула, позволяющая свести вычисление поверхностного интеграла 1-го рода к вычислению двойного интеграла:

                        (12.5)

Замечание. Уточним еще раз, что в левой части формулы (12.5) стоит поверхностный интеграл, а в правой – двойной.

 

Пример.           

Вычислим , где S – часть плоскости 3х + 4у – 5z = 36, расположенная в пер-вом октанте. Преобразуем это уравнение к виду , откуда ,

, . Проекцией плоскости S на плоскость Оху является тре-угольник с вершинами в точках (0, 0), (12, 0) и (0, 9). Тогда из формулы (12.5) полу-чим: