Лекция 9.Вычисление тройного интеграла. Криволинейные системы координат. Якобиан и его геометрический смысл. Замена переменных в кратных интегралах. Переход к цилиндрическим и сферическим координатам в тройном интеграле.
Процедура вычисления тройного интеграла аналогична соответствующей операции для двойного интеграла. Для ее описания введем понятие правильной трехмерной области:
Определение 9.1. Трехмерная область V, ограниченная замкнутой поверхностью S, называется правильной, если:
- любая прямая, параллельная оси Оz и проведенная через внутреннюю точку области, пересекает S в двух точках;
- вся область V проектируется на плоскость Оху в правильную двумерную область D;
- любая часть области V, отсеченная от нее плоскостью, параллельной какой-либо из координатных плоскостей, обладает свойствами 1) и 2).
Рассмотрим правильную область V, ограниченную снизу и сверху поверхностями z=χ(x,y) и z=ψ(x,y) и проектирующуюся на плоскость Оху в правильную область D, внутри которой х изменяется в пределах от а до b, ограниченную кривыми y=φ1(x) и y=φ2(x) (рис.1). Зададим в области V непрерывную функцию f(x, y, z).
Определение 9.2. Назовем трехкратным интегралом от функции f(x, y, z) по области V выражение вида:
. (9.1)
Трехкратный интеграл обладает теми же свойствами, что и двукратный. Перечислим их без доказательства, так как они доказываются аналогично случаю двукратного интеграла.
- Если область V разбить на две области V1 и V2 плоскостью, параллельной какой-либо из координатных плоскостей, то трехкратный интеграл по области V равен сумме трехкратных интегралов по областям V1 и V2.
- Если т и М – соответственно наименьшее и наибольшее значения функции f(x,y,z) в области V, то верно неравенство . mV ≤ IV ≤ MV, где V – объем данной области, а IV – трехкратный интеграл от функции f(x,y,z) по области V.
- Трехкратный интеграл IV от непрерывной функции f(x,y,z) по области V равен произведению его объема V на значение функции в некоторой точке Р области V:
(9.2)
Вычисление тройного интеграла.
Теорема 9.1. Тройной интеграл от функции f(x,y,z) по правильной области V равен трехкратному интегралу по той же области:
. (9.3)
Доказательство.
Разобьем область V плоскостями, параллельными координатным плоскостям, на п правильных областей . Тогда из свойства 1 следует, что
,
где – трехкратный интеграл от функции f(x,y,z) по области
.
Используя формулу (9.2), предыдущее равенство можно переписать в виде:
.
Из условия непрерывности функции f(x,y,z) следует, что предел интегральной суммы, стоящей в правой части этого равенства, существует и равен тройному интегралу . Тогда, переходя к пределу при
, получим:
IV = ,
что и требовалось доказать.
Замечание.
Аналогично случаю двойного интеграла можно доказать, что изменение порядка интегрирования не меняет значения трехкратного интеграла.
Пример. Вычислим интеграл где V – треугольная пирамида с вершинами в точках (0, 0, 0), (1, 0, 0), (0, 1, 0) и (0, 0, 1). Ее проекцией на плоскость Оху является треугольник с вершинами (0, 0), (1, 0) и (0, 1). Снизу область ограничена плоскостью z = 0, а сверху – плоскостью x + y + z = 1. Перейдем к трехкратному интегралу:
Множители, не зависящие от переменной интегриро-вания, можно вынести за знак соответствующего интеграла:
Криволинейные системы координат в трехмерном пространстве.
- Цилиндрическая система координат.
Цилиндрические координаты точки Р(ρ,φ,z) – это полярные координаты ρ, φ проекции этой точки на плоскость Оху и аппликата данной точки z (рис.2).
Формулы перехода от цилиндрических координат к декартовым можно задать следующим образом:
x = ρ cosφ, y = ρ sinφ, z = z. (9.4)
- Сферическая система координат.
В сферических координатах положение точки в пространстве определяется линейной координатой ρ – расстоянием от точки до начала декартовой системы координат (или полюса сферической системы), φ – полярным углом между положительной полуосью Ох и проекцией точки на плоскость Оху, и θ – углом между положительной полуосью оси Оz и отрезком OP (рис.3). При этом
Зададим формулы перехода от сферических координат к декартовым:
x = ρ sinθ cosφ, y = ρ sinθ sinφ, z = ρ cosθ. (9.5)
Якобиан и его геометрический смысл.
Рассмотрим общий случай замены переменных в двойном интеграле. Пусть в плоскости Оху дана область D, ограниченная линией L. Предположим, что х и у являются однозначными и непрерывно дифференцируемыми функциями новых переменных u и v:
x = φ(u, v), y = ψ(u, v). (9.6)
Рассмотрим прямоугольную систему координат Оuv, точка Р΄(u, v) которой соответствует точке Р(х, у) из области D. Все такие точки образуют в плоскости Оuv область D΄, ограниченную линией L΄. Можно сказать, что формулы (9.6) устанавливают взаимно однозначное соответствие между точками областей D и D΄. При этом линиям u = const и
v = const в плоскости Оuv будут соответствовать некоторые линии в плоскости Оху.
Рассмотрим в плоскости Оuv прямоугольную площадку ΔS΄, ограниченную прямыми u = const, u+Δu = const, v = const и v+Δv = const. Ей будет соответствовать криволинейная площадка ΔS в плоскости Оху (рис.4). Площади рассматриваемых площадок тоже будем обозначать ΔS΄ и ΔS. При этом ΔS΄ = Δu Δv. Найдем площадь ΔS. Обозначим вершины этого криволинейного четырехугольника Р1, Р2, Р3, Р4, где
P1(x1, y1), x1 = φ(u, v), y1 = ψ(u, v);
P2(x2, y2), x2 = φ(u+Δu, v), y2 = ψ(u+Δu, v);
P3(x3, y3), x3 = φ(u+Δu, v+Δv), y3 = ψ(u+Δu, v+Δv);
P4(x4, y4), x4 = φ(u, v+Δv), y4 = ψ(u, v+Δv).
Заменим малые приращения Δu и Δv соответствующими дифференциалами. Тогда
При этом четырехугольник Р1 Р2 Р3 Р4 можно считать параллелограммом и определить его площадь по формуле из аналитической геометрии:
(9.7)
Определение 9.3. Определитель называется функциональным определителем или якобианом функций φ(х, у) и ψ(х, у).
Переходя к пределу при в равенстве (9.7), получим геометрический смысл якобиана:
, (9.8)
то есть модуль якобиана есть предел отношения площадей бесконечно малых площадок ΔS и ΔS΄.
Замечание. Аналогичным образом можно определить понятие якобиана и его геометрический смысл для п-мерного пространства: если x1 = φ1(u1, u2,…,un), x2 = φ2(u1, u2,…,un),…, xn = φ(u1, u2,…, un), то
(9.8)
При этом модуль якобиана дает предел отношения «объемов» малых областей пространств х1, х2,…, хп и u1, u2,…, un .
Замена переменных в кратных интегралах.
Исследуем общий случай замены переменных на примере двойного интеграла.
Пусть в области D задана непрерывная функция z = f(x,y), каждому значению которой соответствует то же самое значение функции z = F(u, v) в области D΄, где
F(u, v) = f(φ(u, v), ψ(u, v)). (9.9)
Рассмотрим интегральную сумму
где интегральная сумма справа берется по области D΄. Переходя к пределу при , получим формулу преобразования координат в двойном интеграле:
(9.10)
Аналогичным образом можно вывести подобную формулу для тройного интеграла:
(9.11)
где x = φ(u, v, w), y = ψ(u, v, w), z = χ(u, v, w),
, (9.12)
а область V пространства Оxyz отображается в область V΄ пространства Ouvw.
Переход к цилиндрическим и сферическим координатам
в тройном интеграле.
Найдем, используя формулы (9.4), (9.5) и (9.12), якобианы перехода от декартовых координат к цилиндрическим и сферическим:
- для цилиндрических координат
(9.13)
- для сферических координат
(9.14)
Тогда формулы перехода к цилиндрическим или сферическим координатам в тройном интеграле будут выглядеть так: (9.15)
,
где смысл обозначений понятен из предыдущего текста.
Примеры.
- Вычислим интеграл от функции
по области, ограниченной поверхностями x² + y² = 1, y = 0, y = x, z = 0, z = 1.
- Пусть подынтегральная функция u = 1, а область интегрирования – шар радиуса R с центром в начале координат. Тогда
.