ИССЛЕДОВАНИЕ СЛЕДЯЩЕЙ СИСТЕМЫ АВТОМАТИЧЕСКОГО РЕГУЛИРОВАНИЯ С РЕОСТАТНОЙ ОБРАТНОЙ СВЯЗЬЮ

Лабораторная работа N 1

ИССЛЕДОВАНИЕ СЛЕДЯЩЕЙ СИСТЕМЫ АВТОМАТИЧЕСКОГО РЕГУЛИРОВАНИЯ С РЕОСТАТНОЙ ОБРАТНОЙ СВЯЗЬЮ

Цель работы: Ознакомиться с принципом работы и устройством следящей САР с реостатной обратной связью на постоянном токе; исследовать статическую характеристику системы; определить качество процесса регулирования.

Инструмент и принадлежности к работе

1. Лабораторная установка                                                1 шт.

2. Цифровая измерительная установка Ф-5071/75                1 шт.

Основные положения

Следящей САР называется такая система, алгоритм функционирования которой содержит предписание изменять управляемую величину в зависимости от неизвестного заранее значения переменной величины на входе автоматической системы. Следящие системы являются частью семейства систем, известных как системы регулирования с обратной связью. Широко распространены дистанционные следящие системы воспроизведения угла и линейных перемещений. Дистанционные следящие системы применяются для управления станками, дистанционной передачи информации, управления антеннами, положением орудий, в управлении высотой и курсом самолёта с помощью автопилота, в счётно-решающих устройствах и др.

 

Функциональная схема следящей САР в общем виде приведена на рис. 1. Специфика работы систем, описанных выше, связана с требованиями получения необходимой точности передачи угловых и линейных перемещений.

Рис. 1. Функциональная схема следящей САР.

Существует большое множество следящих систем, отличающихся принципом действия, структурными элементами, принципом управления, исполнительным устройством, родом источников питания и пр.

По методу сравнения сигналов следящие системы могут быть аналоговыми, в которых сигнал рассогласования выделяется различными методами в аналоговой форме, цифровыми, в которых задающим устройством является ЭВМ, а сигнал рассогласования выделяется в цифровой форме в виде кода, и цифро-аналоговыми.

По структурной схеме следящие системы могут быть одно- и двухканальными, с одним или несколькими принимающими устройствами, с последовательными или параллельными корректирующими устройствами, простыми и взаимосвязанными сложными и т.п.

На практике наиболее распространёнными являются одноканальные следящие системы. Для повышения точности применяются двухканальные следящие системы, известные как системы с грубого и точного отсчётов.

В случае, когда суммарная погрешность исчисляется угловыми секундами при большом передаточном отношении электрической редукции, применяются трёхканальные следящие системы.

По типу измерительных элементов следящие системы могут иметь индуктивные, индукционные, потенциометрические, фотоэлектрические, ёмкостные, генераторные и другие датчики.

По типу исполнительных устройств следящие системы могут быть гидравлическими, пневматическими и комбинированными (с муфтами), с электродвигателями переменного и постоянного токов, шаговыми двигателями, моментными двигателями и т.п.

В зависимости от типа исполнительных устройств в маломощных системах применяются, главным образом, полупроводниковые усилители постоянного и переменного токов. В системах средней мощности возможно применение магнитных и тиристорных усилителей. В мощных системах применяются электромашинные усилители и тиристорные преобразователи.

По принципу управления исполнительным двигателем наибольшее распространение имеют следящие системы непрерывного действия с пропорциональным изменением сигнала. На обмотку управления двигателем подаётся напряжение, пропорциональное углу рассогласования, и, соответственно, частота вращения исполнительного двигателя пропорциональна сигналу рассогласования.

Применяется также управление релейного типа, при котором на обмотку управления двигателя при определённом угле рассогласования или при определённом значении управляющего сигнала подаётся максимальное напряжение. При частотном управлении двигателем на обмотку управления подаются импульсы определённой длительности во времени, но изменяется частота их следования или при постоянной частоте следования импульсов изменяется их длительность. При этом частота вращения двигателя пропорциональна частоте импульсов или соответственно длительности импульсов.

Возможны схемы управления, в которых при малом рассогласовании имеется линейный участок изменения сигнала, а при каком-то заданном угле рассогласования применяется релейное управление.

При создании следящих систем в технических требованиях задаются следующие параметры: точность, диапазон работы, максимальная скорость и ускорение входной оси, величина, и характер нагрузки, род источника, питания, габариты и надежность, а также условия эксплуатации систем – температура, влажность окружающей среды, вибрации и пр. В соответствии с этими требованиями предварительно выбирают измерительные элементы, отвечающие требованиям точности в заданном диапазоне работ.

Исходя из значений нагрузки, скорости и ускорения, а также из режима работы, выбирают исполнительное устройство и передаточное отношение редуктора привода. В маломощных следящих системах в качестве исполнительного элемента получили широкое распространение двухфазные асинхронные двигатели. При проектировании необходимы малые люфты и малый момент инерции редуктора. Момент инерции редуктора должен быть меньше момента инерции ротора двигателя, поэтому необходимо предельно уменьшать момент инерции трибки на валу двигателя. Для уменьшения диаметра шестерни, зацепляющейся с трибкой, передаточное отношение первой пары шестерён редуктора следует выбирать в пределах 2-3, передаточное отношение второй пары должно быть не более 4-6. Приведенный момент инерции последующих пар будет пренебрежимо малым. Тип усилителя и входящие в него преобразовательные элементы выбирают в соответствии с выходными параметрами измерительных элементов (выходным сопротивлением приемника, остаточным и максимальным выходными напряжениями приёмника и т. д.) и исполнительного элемента (сопротивлением нагрузки и максимальной выходной мощностью) с учётом принципа управления двигателем. В маломощных следящих системах используются полупроводниковые усилители. Постоянные времени всех цепей и элементов, коэффициенты усиления преобразователей и усилителей, передаточные отношения и прочие параметры элементов определяются расчётным или экспериментальным путем, а также по справочным данным. Далее выбирается структурная схема и составляются дифференциальные уравнения звеньев системы и передаточные функции звеньев для расчёта системы на устойчивость и выбора корректирующих цепей в целях обеспечения необходимого запаса устойчивости и необходимого качества переходного процесса.

При расчете погрешностей следящих систем учитывают, что суммарная погрешность состоит из статической Δφст динамической Δφдин погрешностей.

Статическая погрешность следящей системы представляет собой разность между угловыми наложениями входной и выходной осей после отработки двигателем системы заданного угла. Эта погрешность складывается из погрешностей измерительных элементов Δφиз датчика и приёмника системы, погрешностей преобразователей аналоговых сигналов в код в цифровых следящих системах Δφак, погрешности зоны нечувствительности Δφ3,.обусловленной моментом нагрузки, погрешности от дрейфа нулевого положения датчика и приемника, усилительно-преобразовательного устройства Δφз погрешности изготовления зубчатых колёс редуктора в системах грубого и точного отсчётов Δφзк погрешности люфта в них Δφл. Часто необходимо учитывать погрешности от температуры окружающей среды Δφt изменения напряжения и частоты питания и от каких-либо других факторов. Так как перечисленные источники погрешностей являются взаимно независимыми, суммарную погрешность можно определить как среднеквадратическую, т. е.:

.

Динамическая погрешность следящей системы Δφдин представляет собой разность между угловыми положениями входной и выходной осей при произвольном законе вращения входной оси. Слежение за положением входной оси осуществляется с определённой точностью в зависимости от выбранных параметров системы. Оценку динамической погрешности, как правило, производят либо при непрерывном вращении, либо при гармонических колебаниях входной оси. При допустимой динамической погрешности требуемый переходной процесс должен обеспечиваться выбором необходимых корректирующих устройств и их параметров. Погрешность в установившемся режиме при вращении входной оси с постоянной скоростью называют кинетической погрешностью. Она зависит от коэффициента усиления усилителя и параметров следящей системы. Отношение частоты вращения входного вала системы к установившемуся значению скоростной погрешности Δφск носит название добротности системы по скорости К: Δφск = Ωвх/К.

Перечисленные динамические погрешности должны быть либо одного порядка со значением основной погрешности – погрешности измерительных элементов, либо меньше её даже в тех случаях, когда погрешность измерительных элементов исчисляется угловыми секундами. Таким образом, суммарная погрешность всей системы ΔφΣ может быть определена как

.

На рисунке 2 представлена следящая система автоматического регулирования (САР), состоящая из потенциометра-датчика ПД и потенциометра-приёмника ПП, включенных параллельно к общему источнику питания Uп. Подвижные контакты потенциометров соответственно соединены механически с задающим и исполнительным рабочими органами. Напряжение Uс, снимаемое с подвижных контактов потенциометров, является напряжением сигнала рассогласования системы. При согласованном положении рабочих органов, когда φд = φп, напряжение сигнала равно нулю. Напряжение сигнала рассогласования Uс  поступает на вход электронного усилителя У, а далее на исполнительный асинхронный двигатель Д. Вал двигателя через зубчатую передачу связан с подвижным контактом потенциометра приёмника. Система работает на устранение ошибки рассогласования. Для отсчёта углов поворота задающего и исполнительного органов применена цифровая измерительная установка Ф-5071/75, в качестве датчиков угла поворота используются сельсины СД1 и СД2, кинематически связанные c задающими и исполнительными рабочими органами. Отсчётным устройством служат блоки индикации Х и Z.

 

 

Рис. 2. Следящая САР угла поворота.

 

Порядок выполнения работы

 

  1. Включить установку в сеть 220 В.
  2. Включить питание установки и прогреть в течение 3 минут.
  3. Установить шкалу потенциометра-датчика на "НОЛЬ".
  4. Нажать на блоках индикации X, Z кнопку "СБРОС".
  5. Установить минимальный коэффициент усиления усилителя при помощи ручки регулятора "УСИЛЕНИЕ".
  6. Поворачивая движок потенциометра-датчика по часовой стрелке на углы кратные 20˚, снять показания значений угла поворота с блоков индикации Х и Z (Х – угол поворота потенциометра-датчика, Z – угол поворота потенциометра-приемника). После поворота на 360˚ измерения повторить, поворачивая рукоятку против часовой стрелки.
  7. Пункты 3-6 повторить для среднего и максимального значения коэффициента усиления усилителя.
  8. Полученные данные занести в таблицу.

 

По часовой стрелке

Против часовой стрелки

Х

Z

σ

Х

Z

σ

 

 

 

 

 

 

 

 

  1. Определить для каждого направления вращения потенциометра-датчика и коэффициента усиления усилителя максимальную погрешность передачи угла в установившемся режиме σ = X – Z.
  2. Построить график зависимости z = f(x) для поворота по часовой и против часовой стрелки.

 

Содержание отчёта

 

  1. Результаты измерений в виде таблицы.
  2. Графики зависимости z = f(x) для различных коэффициентов усиления.
  3. Выводы по работе.

 

Контрольные вопросы к лабораторной работе

 

  1. Принцип действия и классификация следящих САР.
  2. Основные источники погрешностей следящих САР.
  3. Потенциометрические следящие САР угла поворота.
  4. Какие параметры задаются в технических требованиях при создании следящих систем?
  5. Как определить добротность следящей САР?