6. Фильтрующие цепи
6.1. Общие сведения об электрических фильтрах
Фильтры применяют для частотной селекции сигналов. Электрическим фильтром называется устройство (четырехполюсник), которое пропускает без ослабления или с малым ослаблением сигналы в заданном диапазоне частот (в заданной полосе), и не пропускает или пропускает с большим ослаблением сигналы других частот.
Полоса частот, в которой ослабление мало, называется полосой пропускания,(прозрачности) фильтра. Полоса частот, в которой ослабление велико, называется полосой непропускания (задержания) фильтра. Между полосами пропускания и непропускания находится переходная область. Частоты, которые соответствуют границам полос пропускания называются граничными или частотами среза и обозначаются ωгр или ωср.
По частотным свойствам различают следующие фильтры (рис. 6.1): фильтры нижних частот (ФНЧ) пропускают колебания с частотами от нуля до некоторой верхней частоты ωср1, фильтры верхних частот (ФВЧ) – колебания с частотой не ниже некоторой нижней частоты ωср2. Полосовые фильтры (ПФ) имеют полосу пропускания от ωср1 до ωср2, режекторные (РФ), или заградительные (ЗФ), фильтры не пропускают колебания внутри интервала частот [ωср1, ωср2].
Рис. 6.1. Частотные характеристики идеальных (сплошная кривая) и реальных (пунктирная) фильтров нижних частот (а), верхних (б), полосового (в) и режекторного (г).
Кроме классификации фильтров по их частотным свойствам они подразделяются и по способам получения нужных частотных свойств. Фильтры создаваемые на базе реактивных четырехполюсников, в которых произведение сопротивлений продольного Z1 и поперечного Z2 плеч не зависит от частоты и для данного фильтра представляет собой некоторое постоянное число k называется k-фильтрами.
Фильтры, полученные из k–фильтров с использованием пересчетного коэффициента m и в которых произведение сопротивлений плеч зависит от частоты, называются m-фильтрами.
Фильтры, амплитудно-частотные характеристики (АЧХ), которых представляются в виде полиномов называются полиноминальными. Фильтры, АЧХ которых аппраксимируются полиномами, предложенными Чебышевым и Баттервортом называются соответственно фильтрами Чебышева и Баттерворта.
Фильтры могут быть созданы только из пассивных LC- или RC–элементов или из RC – элементов в сочетании с активными элементами (операционными усилителями). Поэтому различают пассивные LC- и RC-фильтры и активные RC–фильтры. LC- и RC–цепочки называются звеньями. Каждое звено имеет продольное и поперечное плечо. Сопротивление продольного плеча обозначается Z1, а поперечного – Z2. Если Z1 носит индуктивный характер, то Z2 должно носить емкостной характер и наоборот. Схемы Г- ,T- и П-образных звеньев LC–фильтров изображены на рис. 6.2.
Рис. 6.2. Схемы Г- (а), Т- (б) и П- (в) образных звеньев LC-фильтров.
Фильтры могут быть однозвенные (первого порядка), двухзвенные (второго порядка) и многозвенные (n- го). Чем выше порядок фильтра, тем круче его амплитудно-частотная характеристика и тем более она похожа на его идеальную характеристику. Фильтр любого порядка можно построить путем каскадного соединения фильтров первого и второго порядков.
LC–фильтр нижних частот (рис. 6.3,а) пропускает электрические колебания в полосе частот от 0 до .
Рис. 6.3. Схема LC-фильтра нижних частот (а) и его АЧХ (б).
Это объясняется тем, что на низких частотах сопротивление индуктивного элемента XL фильтра мало, а емкостного XC – велико и электрические колебания проходят со входа на выход почти без ослабления. С увеличением частоты сопротивление индуктивного элемента возрастает, а емкостного – снижается и коэффициент передачи фильтра уменьшается (рис. 6.3,б).
LC-фильтр верхних частот (рис. 6.4,а) не пропускает нижних частот так, как XC велико, XL мало. С ростом частоты сопротивление продольного плеча (XC) уменьшается, а поперечного (XL) увеличивается, что приводит к повышению коэффициента передачи. Полоса пропускания такого фильтра лежит в диапазоне частот до ƒ = ∞ (рис. 6.4,б).
Рис. 6.4. Схема LC-фильтра верхних частот (а) и его АЧХ (б).
Принцип работы полосового фильтра (рис. 6.5,а) основан на использовании резонансов напряжений и токов в последовательных и параллельных колебательных контурах.
Рис. 6.5. Схема полосового LC-фильтра (а) и его АЧХ (б).
При совпадении частот, на которых наблюдается резонанс напряжений в последовательном контуре L1C1 и резонанс токов в параллельном колебательном контуре L2C2, сопротивление продольного плеча L1C1 оказывается минимальным, а поперечного L2C2 – максимальным. Коэффициент передачи ПФ при этом имеет наибольшее значение. При отклонении частоты входных колебаний от резонансной частоты ƒ0 коэффициент передачи ПФ уменьшается (рис. 6.5,б).
В заграждающих (режекторных) фильтрах (рис. 6.6,а) также используются резонансы напряжений и токов, но в отличие от ПФ параллельный колебательный контур включен в продольное плечо, а последовательный – в поперечное.
Рис. 6.6. Схема режекторного LC-фильтра (а) и его АЧХ (б).
Резонансная частота контура определяется выражением
.
При резонансе сопротивление продольного плеча оказывается максимальным, а поперечного – минимальным, что соответствует наибольшему затуханию (рис. 6.6,б). Для электрических колебаний с частотами, отличающимися от резонансной, сопротивление продольного плеча уменьшается, а поперечного – увеличивается, в результате чего происходит увеличение коэффициента передачи фильтра.
RC-фильтр нижних частот. На частотах до нескольких десятков килогерц применяются RC-фильтры, состоящие из резисторов и конденсаторов. В качестве фильтра нижних частот (ФНЧ) используется одно или несколько включённых последовательно RC-звеньев, ёмкость включается в поперечное звено (рис.6.7,а).
Рис. 6.7. Схема пассивного RC-фильтра нижних частот (а) и его АЧХ (б).
С увеличением частоты сопротивление конденсатора уменьшается, что приводит к уменьшению коэффициента передачи (рис. 6.7,б).
В RC-фильтре верхних частот (ФВЧ) конденсатор включён в продольное плечо (рис. 6.8,а). Поэтому на низких частотах его сопротивление значительно больше сопротивление резистора параллельного плеча и коэффициент передачи мал. С увеличением частоты сопротивление конденсатора уменьшается, что приводит к увеличению коэффициента передачи (рис. 6.8,б).
Рис. 6.8. Схема пассивного RC-фильтра верхних частот (а) и его АЧХ (б).
Рассмотренные ФНЧ и ФВЧ, состоящие из нескольких однотипных звеньев RC, называются цепочечными RC-фильтрами.
В качестве полосового RC-фильтра на низких частотах применяется Г-образный RC-фильтр (рис. 6.9,а).
Рис. 6.9. Схема пассивного полосового RC-фильтра (а) и его АЧХ (б).
На некоторой частоте fр, называемой квазирезонансной, коэффициент передачи такого фильтра имеет наибольшее значение, равное 1/3 , и уменьшается при отклонении частоты входного напряжения от fр (рис. 6.9,б).
Роль заграждающих фильтров (ЗФ) на низких частотах выполняют Т-образные (рис. 6.10,а,б) и двойной Т-образный (рис. 6.11,а) фильтры. У этих фильтров на квазирезонансной частоте fр коэффициент передачи имеет минимальное значение и увеличивается при отклонении частоты входного напряжения от fр (рис. 6.11,б).
Рис. 6.10. Схемы заграждающих Т-образных RC-фильтров (q – коэффициент, равный целому положительному числу).
Рис. 6.11. Схема заграждающего двойного Т-образного RC-фильтра (а) и его АЧХ (б).
Материалы, изложенные в этой главе, дают общее представление об электрических фильтрах и их характеристиках, но не позволяют оценить качество их работы.
Последующие главы посвящены рассмотрению конкретных типов электрических фильтров и анализу их рабочих характеристик.