4.4. Переходные процессы в RLC-цепях

4.4. Переходные процессы в RLC-цепях

Рассмотрим переходные процессы в RLC-цепях на примере цепи последовательного колебательного контура рис. 4.3,а, потери в котором будем учитывать путем включения в цепь резистораR.

Рис.4.3. RLC-цепь (а) и переходные процессы в ней (б) и (в).

Переходные процессы в последовательном колебательном контуре при нулевых начальных условиях. Установим ключ К в положение 1, и подключим входное воздействие к контуру. Под действием подключенного источника u в контуре потечет ток i, который создаст напряжения uR, uL, uC .

 

На основании второго закона Кирхгофа для этого контура можно записать следующее уравнение

.

Учитывая, что будем иметь

.                                  (4.34)

Общее решение уравнения (4.34) будем искать в виде суммы свободной  uС св и принужденной uС пр составляющих:

.                                                  (4.35)

Свободная составляющая определяется решением однородного дифференциального уравнения, которое получается из (4.34) при u = 0

.                                  (4.36)

Решение (4.36) зависит от корней характеристического уравнения, которое получается из (4.36) и имеет вид

.                                          (4.37)

Корни этого уравнения определяются только параметрами цепи R, L ,C и равны

,                  (4.38)

где α = R/2L – коэффициент затухания контура;

– резонансная частота контура.

Из (4.38) видно, что корни р1 и р2 зависят от характеристического сопротивления контура и могут быть:

при R > 2ρ вещественными и различными;

при R < 2ρ комплексно-сопряженными;

при R = 2ρ вещественными и равными.

При R > 2ρ свободная составляющая будет равна:

.                                          (4.39)

Пусть входное воздействие u = U = const, тогда принужденная составляющая uпр = U. Учитывая выражение (4.39) и что uпр = U выражение (4.35) примет вид:

.                                          (4.40)

Зная uС находим ток в контуре

.                          (4.41)

Для определения постоянных интегрирования А1 и А2 запишем начальные условия для uC и i при t = 0:

                                         (4.42)

Решая систему уравнений (4.42) получаем:

;

.

Подставляя А1 и А2 в уравнения (4.40) и (4.41) и учитывая, что в соответствии с (4.38) p1 p2=1/LC будем иметь:

;                          (4.43)

.                                  (4.44)

Так как , то

.                          (4.45)

Графики изменения uС, i, uL в последовательном колебательном контуре при условии R > 2ρ приведены на рис. 4.3,б).

Моменты времени t1 и t2 определяются соответственно из условий

,                

и равны:

;        .

Анализ графиков, описываемых выражениями (4.43 – 4.45) показывает, что при R > 2ρ (при больших потерях) в контуре происходят апериодические процессы.

Рассмотрим процессы в контуре при R < 2ρ. В этом случае из (4.38) имеем:

,                          (4.46)

где – частота свободных затухающих колебаний. Решение уравнения (4.36) имеет вид

,                                  (4.47)

где A и θ – постоянные интегрирования

Учитывая (4.47) и что uпр = U находим закон изменения напряжения на емкости

.          (4.48)

Под действием uС в цепи протекает ток

.          (4.49)

Полагая в (4.48) и (4.49) t = 0 и учитывая законы коммутации получим

                                 (4.50)

Решая систему уравнений (4.50) находим

Подставляя А в (4.48) и (4.49) и учитывая, что находим уравнения описывающие изменения uС, i, uL в контуре для случая R < 2ρ:

.                  (4.51)

.                                          (4.52)

.                          (4.53)

График изменения напряжения uС, определяемый выражением (4.51) изображен на рис. 4.3,б пунктирной линией. Из рисунка и выражения (4.51) видно, что если последовательный контур имеет малые потери (R < 2ρ), то при подключении к нему источника постоянного напряжения в контуре возникает затухающий колебательный процесс.

Переходные процессы в последовательном колебательном контуре при ненулевых начальных условиях. Установим ключ К в цепи рис. 4.3,а в положение 2. При этом произойдет отключение входного воздействия от цепи и цепь замкнется. Поскольку до коммутации цепи конденсатор был заряжен до напряженияuC = U, то в момент замыкания цепи он начнет разряжаться и в цепи возникнет свободный переходной процесс.

Если в контуре выполняется условие R> 2ρ, то корни р1 и р2 в (4.38) будут вещественны и различны и решение уравнения (4.36) будет иметь вид

.                                  (4.54)

Напряжение uC создает ток в цепи

.                  (4.55)

Для определения постоянных интегрирования А1 и А2 положим t = 0 и учтем, что на момент коммутации uC = U, i = 0, тогда из (4.54) и (4.55) получим

                                         (4.56)

Решая систему уравнений (4.56) находим

;

.

Подставляя А1 и А2 в (4.54) и (4.55) получаем уравнения для напряжения uC и тока i в цепи контура

.                                  (4.57)

.                                  (4.58)

Из выражений (4.57) и (4.58) видно, что при отключении входного воздействия от цепи контура, который имеет большое затухание (R > 2ρ) происходит апериодический разряд емкости С. Запасенная до отключения входного воздействия энергия в емкости WС = CU2/2 расходуется на покрытие тепловых потерь в резисторе R и создания магнитного поля в индуктивности L. Затем энергия электрического поля емкости WС и магнитная энергия индуктивности WL расходуется в резисторе R.

Найдем закон изменения напряжения uC и тока i в цепи, когда контур обладает малыми потерями, т.е. при условии R < 2ρ. В этом случае корни р1 и р2 носят комплексно-сопряженный характер (4.46) и решение уравнения (4.36) имеет вид:

.                          (4.59)

Под действием uC в цепи протекает ток

.          (4.60)

Для определения постоянных интегрирования А и θ учтем, что на момент коммутации t = 0, uC = U, i = 0 и подставляя эти значения в (4.59) и (4.60) получаем

                                 (4.61)

Решая систему уравнений (4.61) находим

Подставляя А и θ в (4.59) и (4.60) и учитывая, что получаем уравнения, определяющие закон изменения напряжения и тока в контуре с малыми потерями

                                 (4.62)

Анализ уравнений (4.62) показывает, что при отключении входного воздействия от контура с малыми потерями (R < 2ρ) в нем возникают затухающие колебания с частотой ωС, которая определяется параметрами R, L, C цепи. Графики изменения uC и i изображены на рис. 4.3,в.

Скорость затухания периодического процесса характеризуют декрементом затухания, который определяется как отношение двух соседних амплитуд тока или напряжения одного знака

.                                          (4.63)

В логарифмической форме декремент затухания имеет вид

.                          (4.64)

Из (4.64) видно, что затухание тем больше чем больше потери в контуре, которые определяются величиной R. При R ≥ 2ρ переходной процесс в контуре становится апериодическим. При R = 0 в контуре имеет место незатухающее гармоническое колебание с частотой . В реальных контурах R ≠ 0, поэтому в них имеют место затухающие колебания.