5.8. Способы определения параметров четырехполюсников

5.8. Способы определения параметров четырехполюсников

Определение параметров простейших четырехполюсников. Рассмотрим схемы простейших четырехполюсников, которые изображены на рис. 5.7,а и б.

Рис. 5.7. Схемы простейших четырехполюсников.

 

На основании закона Кирхгофа для схемы (рис. 5.7,а) можно записать: U1= U2 + I2Z1;  I1 = I2. На основании сравнения этих уравнений с уравнениями передачи в А-параметрах (5.7) для рассматриваемой схемы можно записать матрицу А-параметров:

.                                                  (5.71)

Для схемы рис. 5.7,б на основании закона Кирхгофа запишем следующие уравнения: U1 = U2;  I1 = U2/Z2 + I2 и поэтому матрица А-параметров будет иметь вид:

.                                                  (5.72)

Зная матрицы А-параметров, используя таблицу пересчета (5.1), можно получить матрицы Y, Z и Н-параметров.

Используя схемы простейших четырехполюсников можно составить схемы типовых четырехполюсников.

Определение параметров типовых четырехполюсников. К типовым пассивным четырехполюсникам относятся Г-, Т-, П-образные схемы, которые изображены на рис. 5.8,а, б, в.

Рис. 5.8 Схемы Г-образного (а), Т-образного (б) и П-образного (в) четырехполюсников.

Г-образный четырехполюсник (рис. 5.8,а) получается путем каскадного соединения простейших четырехполюсников (рис. 5.7,а и б). Следовательно, его матрицуА-параметров можно получить перемножением матриц (5.71) и (5.72):

.                                  (5.73)

Т-образный четырехполюсник (рис. 5.8,б) образуется путем каскадного соединения Г- образной схемы (рис. 5.8,а) с элементами Z1 и Z2 и схемы (рис. 5.7,а) с элементом Z3 в продольном плече. Тогда его матрица А-параметров определяется как произведение матриц Аг и матрицы (5.71), в которой Z1 заменено Z3.

.

Выполняя перемножение матриц Аг и А′1 получим:

.          (5.74)

П-образный четырехполюсник (рис. 5.8,в) образуется путем каскадного соединения простейшего четырехполюсника (рис. 5.7,б) с элементомZ1 и Г-образного четырехполюсника (рис. 5.8,а) с элементами Z2 и Z3 в продольном и в поперечном плечах. Следовательно, его матрицу А-параметров можно получить перемножением матриц соединенных четырехполюсников, т.е.:

,          (5.75)

Матрица А′г получена из (5.73) путем замены Z1 на Z2 и Z2 на Z3, а матрица А′2 – из (5.72) путем замены Z2 на Z1.

Зная А-параметры типовых четырехполюсников используя таблицу (5.1) можно определить другие интересующие нас параметры Г-, Т- и П-образных четырехполюсников.

При анализе сложных четырехполюсников необходимо выделить в их составе простейшие и типовые четырехполюсники и установить способы их соединения. После этого с помощью матричных методов расчета можно определить матрицы сложного четырехполюсника.

Экспериментальный способ определения параметров четырехполюсника. Если схема четырехполюсника неизвестна, то его параметры можно определить экспериментальным путем, используя режимы холостого хода и короткого замыкания.

Рис. 5.9. Схема для экспериментального определения параметров четырехполюсника.

Определим А-параметры четырехполюсника.

Для этого на входе четырехполюсника подключим вольтметр (V), амперметр (А) и фазометр (φ), как показано на рис. 5.9.

Переведем четырехполюсник в режим холостого хода по выходу (I2=0) и измерим с помощью приборов Iх.х.1, Uх.х.1 и φх.х.1.

В случае, когда I2 = 0 система А-параметров имеет вид:

                                                         (5.76)

Из (5.76) получим

.                                                  (5.77)

Переведем четырехполюсник в режим короткого замыкания по выходу (U2 = 0). Измерим Iк.з.1, Uк.з.1 и φк.з.1, тогда система А-параметров будет иметь вид:

                                                         (5.78)

Из (5.78) получим

.                                                  (5.79)

Подключим приборы к зажимам (2-2) и переведем четырехполюсник в режим холостого хода по входу (I1 = 0) и измерим Iх.х.2, Uх.х.2 и φх.х.2. Тогда имеем:

                                                         (5.80)

Из (5.80) получим

.                                          (5.81)

Четвертое уравнение получим, используя соотношение:

.                                                  (82)

Решив систему уравнений (5.77), (5.79), (5.81) и (5.82), найдем А-параметры:

;        ;

;                        .