7.Маркировка транзисторов.
Маркировка транзисторов применяемая с 1972 г., предусматривает шестисимвольное буквенно-цифровое обозначение. При этом каждый символ несет следующую информацию о транзисторе. Первый символ – буква или цифра, указывает исходный полупроводниковый материал. Второй символ – буква, обозначает класс прибора: П– полевыe; Т – биполярные транзисторы. Третий символ – цифра (от 1 до 9), указывает на энергетическую и частотную характеристики биполярного и полевого транзисторов. Четвертый и пятый символы цифры (от 01 до 99), указывают порядковый номер разработки приборов. Деление по группам (шестой символ – буква) осуществляют по каким-либо параметрам прибора (коэффициенту передачи тока, обратному напряжению и др.). Например, маркировка КТ905А означает: кремниевый биполярный транзистор, мощность рассеяния более 1,5 Вт, рабочая частота выше 30 МГц, 5-я по порядку разработка, относится по своим параметрам к группе А.
8.Схемы включения.
Как указывалось выше, полевой транзистор может быть включен в схему тремя различными способами:
– с общим истоком,
– с общим стоком,
– с общим затвором.
Схема с общим истоком представлена на (рис. 4), она характеризуется высокими входным и выходным сопротивлениями и коэффициентом усиления по напряжению, большим единицы. Эта схема аналогична схеме включения электронной лампы с общим катодом. Входной сигнал подается между затвором и истоком, выходной снимается между стоком и истоком. Оба сигнала находятся в противофазе. Входное сопротивление каскада определяется сопротивлениемр-п-перехода затвора Rзи и достигает 10—1000 Мом на низкой частоте.
Входная емкость с учетом эффекта Миллера определяется междэлектродными емкостями транзистора и коэффициентом усиления каскада по напряжениюKн, при этом
Свх = Сзи + (1 + Кн)*Сзс ( 9 )
Выходное сопротивление каскада определяется параллельно включенными сопротивлением нагрузки Rн и динамическим сопротивлением стока Rд. При этом
Rвых = Rд * Rн / Rд + Rн. ( 10 )
Коэффициент усиления каскада по напряжению, как и в случае ламповой схемы, равен:
( 11 )
где
( 12 )
собственный коэффициент усиления транзистора по напряжению. При Rд>>Rн получаем: Кн = Sмакс *Rн. При включении в цепь истока резистораR1, обеспечивающего отрицательную обратную связь по току, коэффициент усиления каскада по напряжению уменьшается до величины K’н, равной:
( 13 )
Поскольку крутизна вольт-амперной характеристики полевого транзистора является функцией напряжения на затворе, то большие входные сигналы могут заметно искажаться. Поэтому схема с общим истоком может использоваться в качестве малосигнального усилителя с переменным коэффициентом усиления.
Рис.4 Включение полевого транзистора по схеме с общим истоком.
Схема с общим стоком или истоковый повторитель (рис.5) аналогична схеме катодного повторителя на электронной лампе. Входное сопротивление каскада выше, а выходное – ниже, чем в случае схемы с общим истоком; коэффициент усиления по напряжению меньше единицы. Входной сигнал подается между затвором и стоком, а снимается между истоком и стоком. Переворот фазы отсутствует.
Истоковый повторитель может быть использован в качестве трансформатора сопротивлений для связи источника сигнала с высоким выходным сопротивлением и схемы с низким входным сопротивлением.
Рис 5. Включение полевого транзистора по схеме с общим стоком.
Схема с общим затвором (рис.6) аналогична ламповой схеме с общей сеткой. Эта схема характеризуется низким входным и высоким выходным сопротивлениями и может быть использована в качестве трансформатора полных сопротивлений для связи между источником сигнала с низким выходным сопротивлением и схемой с высоким входным сопротивлением.
Входное сопротивление каскада равно:
( 14 )
а входная емкость Свх равна межэлектродной емкости затвор – исток.
Выходное сопротивление каскада с общим затвором определяется, как и в случае каскада с общим истоком, параллельно включенными сопротивлением нагрузки и динамическим сопротивлением стока (см. формулу ( 10 )).
Коэффициент усиления каскада по напряжению с учетом сопротивления источника сигнала Rг равен:
( 15 )
Каскады с общим затвором могут использоваться в высокочастотных схемах, однако в многокаскадных схемах коэффициент усиления снижается из-за несогласованности выходных и входных сопротивлений.
Рис.6. Включение полевого транзистора по схеме с общим затвором.
9.Система параметров и методика их измерения.
По аналогии с ламповой электроникой, в которой за типовую принята схема с общим катодом, для полевых транзисторов типовой является схема с общим истоком. Распространенная в ламповой электронике для характеристики элементов четырехполюсника система проводимостей или y-параметров, может быть с успехом применена и для характеристики параметров полевых транзисторов.
Для схемы с общим истоком переход от параметров четырехполюсника к параметрам собственно полевого транзистора, независящим от схемы включения, осуществляется довольно просто. При таком включении каждая из проводимостей эквивалентной схемы имеет точный физический смысл, а именно:
1 ) входная проводимость определяется проводимостью участка затвор – исток, т. е.
у з.и = у 11 + у 12 ( 16 )
2 ) входная проводимость определяется проводимостью участка сток – исток, т. е.
у и.с = у 22 + у 21 ( 17 )
3 ) функция прямой передачи определяется крутизной ВАХ , т. е.
S = y 21 + y 12 ( 18 )
4 ) функция обратной передачи определяется проходной проводимостью
у з.с = – у 12 ( 19 )
Эти параметры принимаются за первичные параметры ПТ, используемого в качестве четырехполюсника. Эквивалентная схема включения ПТ в качестве усилительного элемента имеет вид, представленный на рис. 7. Если первичные параметры четырехполюсника для схемы с общим истоком известны, то можно произвести расчет параметров для любой другой схемы включения ПТ.
В настоящее время нет единой спецификации параметров ПТ и наряду с у – параметрами часто приводятся значения максимального тока стока Iмакс, напряжения отсечки U 0 и крутизны S.
Рис. 7. Эквивалентная схема включения ПТ в качестве усилительного элемента.
Информацию об усилительных свойствах полевого транзистора можно получить из рассмотрения семейства статических вольт-амперных характеристик. Методика снятия этих характеристик не отличается от аналогичной методики для вакуумных ламп. Самым простым методом является снятие характеристик по точкам. Поскольку схема с общим истоком является типовой, то обычно при снятии вольт-амперных характеристик стока исток заземляется, а к стоку и затвору подключаются регулируемые источники напряжения соответствующей полярности и измерительные приборы (рис.8).
Рис.8 Схема измерения параметров полевых транзисторов.
Полное семейство вольт-амперных характеристик стока можно получить также с помощью характериографа. При этом на сток полевого транзистора необходимо подавать напряжение развертки пилообразной формы, а на затвор – ступенчатое напряжение. Полярности пилообразного и ступенчатого напряжений должны выбираться в соответствии с полярностью испытываемого транзистора.
По семейству вольт-амперных характеристик легко определить величину Iмакс и зависимость тока стока в режиме насыщения от напряжения на затворе.
При определении с помощью статических характеристик напряжения отсечки U0 и крутизны S встречается ряд затруднений. Поскольку переход от омической области к пентодной на вольт-амперных характеристиках происходит плавно, для определенияU0 необходимо измерять напряжение на затворе, при котором ток стока уменьшается до нуля. Так как между истоком и стоком запертого транзистора всегда существует некоторый остаточный ток, то при определенииUо необходимо установить какой-то критерий для остаточного тока стока. Таким критерием может быть определенная величина тока стока, например 0,1 мка, или определенный процент от значения максимального тока стока, обычно 0.1—0.5%.
10.Расчетная часть.
Для определения статических параметров используем вольт – амперную характеристику выходную и прямой передачи. Рассмотрим эти характеристики для транзистора КП 103 К. Это транзистор с р-каналом.
Определим статические параметры для схемы с общим затвором.
1 ) Крутизна ( проводимость прямой передачи ) равна:
На характеристике прямой передачи найдем Icи Uзи:
2 ) Выходное сопротивление равно:
На выходной характеристике найдем Uзс и Ic
Uзс = 4 В, Ic = 0.2 mA
3 ) Коэффициент усиления по напряжению равен:
= S * Ri
= 1.2 * 20 = 24
11.Эксперементальное исследования
Соберем эксперементальную схему в Worcbench.
Транзистор КП 103 К
1. Снятие выходной характеристики транзистора.
Будем изменять Езс при постоянном Ези
Uзи = 0.5 В
Uзс = 4 В Ic = 0.17 mA
2. Снятие характеристики прямой передачи.
Будем изменять Ези при постоянном Езс
Uзс = -5 В
Uзи = 0.5 В
Ic = 0.7mA
Выводы
Чтобы схемы на полевых транзисторах имели широкое применение в будущем, они должны иметь преимущество перед существующими интегральными схемами. В основном эти преимущества не будут в характеристиках. Биполярные интегральные схемы с их низким пороговым напряжением, высоким коэффициентом усиления и низким напряжением насыщения превосходят МОП-схемы, если сравнивать по быстродействию и мощности.
Теория работы полевых транзисторов в настоящее время достаточно хорошо разработана и довольно успешно применяется при конструировании цифровых логических схем
Дальнейшее совершенствование полевых транзисторов развивается в следующих направлениях: увеличение быстродействия, уменьшение размеров и потребляемой мощности, применение новых технологических приемов в изготовлении МОП- и КМОП-структур ИМС, увеличение граничной частоты (быстродействия) и мощности, уменьшение собственных шумов и влияния дестабилизирующих факторов приборов дискретного действия, уменьшение разброса и увеличение стабильности всех параметров полевых транзисторов, создание новых конструктивных разновидностей с использованием как кремния, так и других полупроводниковых материалов, принципиально новых приборов на основе использования свойств и эффектов, присущих полевым транзисторам.
Заключение
В данной работе рассматривался принцип действия полевого транзистора с p-n переходом. Были рассчитаны статические параметры полевого транзистора с общим затвором теоретически и экспериментально. Небольшие расхождения между статическими параметрами, определенными теоретически и экспериментально, связаны с неточностью графоаналитического метода.