Анализ и расчет статических параметров транзистора в схеме с общим затвором 2

7.Маркировка транзисторов.

Маркировка транзисторов применяемая с 1972 г., предусматривает шестисимвольное буквенно-цифровое обозначение. При этом каждый символ несет следующую информацию о транзисторе. Первый символ – буква или цифра, указывает исходный полупроводниковый материал. Второй символ – буква, обозначает класс прибора: П– полевыe; Т – биполярные транзисторы. Третий символ – цифра (от 1 до 9), указывает на энергетическую и частотную характеристики биполярного и полевого транзисторов. Четвертый и пятый символы цифры (от 01 до 99), указывают порядковый номер разработки приборов. Деление по группам (шестой символ – буква) осуществляют по каким-либо параметрам прибора (коэффициенту передачи тока, обратному напряжению и др.). Например, маркировка КТ905А означает: кремниевый биполярный транзистор, мощность рассеяния более 1,5 Вт, рабочая частота выше 30 МГц, 5-я по порядку разработка, относится по своим параметрам к группе А.

8.Схемы включения.

Как указывалось выше, полевой транзистор может быть включен в схему тремя различными способами:

– с общим истоком,

– с общим стоком,

– с общим затвором.

 

Схема с общим истоком представлена на (рис. 4), она характеризуется высокими входным и выходным сопротивлениями и коэффициентом усиления по напряжению, большим единицы. Эта схема аналогична схеме включения электронной лампы с общим катодом. Входной сигнал подается между затвором и истоком, выходной снимается между стоком и истоком. Оба сигнала находятся в противофазе. Входное сопротивление каскада определяется сопротивлениемр-п-перехода затвора Rзи и достигает 10—1000 Мом на низкой частоте.

Входная емкость с учетом эффекта Миллера определяется междэлектродными емкостями транзистора и коэффициентом усиления каскада по напряжениюKн, при этом

 

                                 Свх = Сзи + (1 + Кн)*Сзс                                       ( 9 )

 

Выходное сопротивление каскада определяется параллельно включенными сопротивлением нагрузки Rн и динамическим сопротивлением стока Rд. При этом

 

                                   Rвых = Rд * Rн / Rд + Rн.                                   ( 10 )

 

Коэффициент усиления каскада по напряжению, как и в случае ламповой схемы, равен:

 

                                                           ( 11 )

где

                                                                                      ( 12 )

собственный коэффициент усиления транзистора по напряжению. При Rд>>Rн получаем: Кн = Sмакс *Rн. При включении в цепь истока резистораR1, обеспечивающего отрицательную обратную связь по току, коэффициент усиления каскада по напряжению уменьшается до величины K’н, равной:

 

                                                                        ( 13 )

 

Поскольку крутизна вольт-амперной характеристики полевого транзистора является функцией напряжения на затворе, то большие входные сигналы могут заметно искажаться. Поэтому схема с общим истоком может использоваться в качестве малосигнального усилителя с переменным коэффициентом усиления.

                 

Рис.4 Включение полевого транзистора по схеме с общим истоком.

Схема с общим стоком или истоковый повторитель (рис.5) аналогична схеме катодного повторителя на электронной лампе. Входное сопротивление каскада выше, а выходное – ниже, чем в случае схемы с общим истоком; коэффициент усиления по напряжению меньше единицы. Входной сигнал подается между затвором и стоком, а снимается между истоком и стоком. Переворот фазы отсутствует.

Истоковый повторитель может быть использован в качестве трансформатора сопротивлений для связи источника сигнала с высоким выходным сопротивлением и схемы с низким входным сопротивлением.

                          

Рис 5. Включение полевого транзистора по схеме с общим стоком.

Схема с общим затвором (рис.6) аналогична ламповой схеме с общей сеткой. Эта схема характеризуется низким входным и высоким выходным сопротивлениями и может быть использована в качестве трансформатора полных сопротивлений для связи между источником сигнала с низким выходным сопротивлением и схемой с высоким входным сопротивлением.

Входное сопротивление каскада равно:

                                                                                       ( 14 )

а входная  емкость Свх равна межэлектродной емкости затвор – исток.

Выходное сопротивление каскада с общим затвором определяется, как и в случае каскада с общим истоком, параллельно включенными сопротивлением нагрузки и динамическим сопротивлением стока (см. формулу ( 10 )).

Коэффициент усиления каскада по напряжению с учетом сопротивления источника сигнала Rг равен:

 

                                                                      ( 15 )

 

Каскады с общим затвором могут использоваться в высокочастотных схемах, однако в многокаскадных схемах коэффициент усиления снижается из-за несогласованности выходных и входных сопротивлений.

                    

 

Рис.6. Включение полевого транзистора по схеме с общим затвором.

 

9.Система параметров и методика их измерения.

 

По аналогии с ламповой электроникой, в которой за типовую принята схема с общим катодом, для полевых транзисторов типовой является схема с общим истоком. Распространенная в ламповой электронике для характеристики элементов четырехполюсника система проводимостей или         y-параметров, может быть с успехом применена и для характеристики параметров полевых транзисторов.

Для схемы с общим истоком переход от параметров четырехполюсника к параметрам собственно полевого транзистора, независящим от схемы включения, осуществляется довольно просто. При таком включении каждая из проводимостей эквивалентной схемы имеет точный физический смысл, а именно:

1 ) входная проводимость определяется проводимостью участка затвор – исток, т. е.

                              у з.и =    у 11 + у 12                                                      ( 16 )

 

2 ) входная проводимость определяется проводимостью участка сток – исток, т. е.

                                 у и.с = у 22 + у 21                                                       ( 17 )

 

3 ) функция прямой передачи определяется крутизной ВАХ , т. е.

                                 S = y 21 + y 12                                                            ( 18 )

4 ) функция обратной передачи определяется проходной проводимостью

                                  у з.с = – у 12                                                              ( 19 )

Эти параметры принимаются за первичные параметры ПТ, используемого в качестве четырехполюсника. Эквивалентная схема включения ПТ в качестве усилительного элемента имеет вид, представленный на рис. 7. Если первичные параметры четырехполюсника для схемы с общим истоком известны, то можно произвести расчет параметров для любой другой схемы включения ПТ.

В настоящее время нет единой спецификации параметров ПТ и наряду с у – параметрами часто приводятся значения максимального тока стока Iмакс, напряжения отсечки U 0 и крутизны S.

 

Рис. 7. Эквивалентная схема включения ПТ в качестве усилительного элемента.

Информацию об усилительных свойствах полевого транзистора можно получить из рассмотрения семейства статических вольт-амперных характеристик. Методика снятия этих характеристик не отличается от аналогичной методики для вакуумных ламп. Самым простым методом является снятие характеристик по точкам. Поскольку схема с общим истоком является типовой, то обычно при снятии вольт-амперных характеристик стока исток заземляется, а к стоку и затвору подключаются регулируемые источники напряжения соответствующей полярности и измерительные приборы (рис.8).

 

Рис.8 Схема измерения параметров полевых транзисторов.

Полное семейство вольт-амперных характеристик стока можно получить также с помощью характериографа. При этом на сток полевого транзистора необходимо подавать напряжение развертки пилообразной формы, а на затвор – ступенчатое напряжение. Полярности пилообразного и ступенчатого напряжений должны выбираться в соответствии с полярностью испытываемого транзистора.

По семейству вольт-амперных характеристик легко определить величину Iмакс и зависимость тока стока в режиме насыщения от напряжения на затворе.

При определении с помощью статических характеристик напряжения отсечки U0 и крутизны S встречается ряд затруднений. Поскольку переход от омической области к пентодной на вольт-амперных характеристиках происходит плавно, для определенияU0 необходимо измерять напряжение на затворе, при котором ток стока уменьшается до нуля. Так как между истоком и стоком запертого транзистора всегда существует некоторый остаточный ток, то при определенииUо необходимо установить какой-то критерий для остаточного тока стока. Таким критерием может быть определенная величина тока стока, например 0,1 мка, или определенный процент от значения максимального тока стока, обычно 0.1—0.5%.

 

10.Расчетная часть.

Для определения статических параметров используем вольт – амперную характеристику выходную и прямой передачи. Рассмотрим эти характеристики для транзистора КП 103 К. Это транзистор с р-каналом.

Определим статические параметры для схемы с общим затвором.

1 ) Крутизна ( проводимость прямой передачи ) равна:

                       

На характеристике прямой передачи найдем       Icи        Uзи:

                           

                          

2 ) Выходное сопротивление равно:

                           

На выходной характеристике найдем        Uзс и      Ic

                  Uзс = 4 В,     Ic = 0.2 mA

                            

3 ) Коэффициент усиления по напряжению равен:

                                   = S * Ri

                               = 1.2 * 20 = 24

 

11.Эксперементальное исследования

 

Соберем эксперементальную схему в Worcbench.

Транзистор КП 103 К

 

 

1. Снятие выходной характеристики транзистора.

Будем изменять Езс при постоянном Ези

                                   Uзи = 0.5 В

 

                              Uзс = 4 В           Ic = 0.17 mA

2. Снятие характеристики прямой передачи.

Будем изменять Ези при постоянном Езс

Uзс = -5 В

                                    Uзи = 0.5 В

                                    Ic = 0.7mA

                

                 

                                    

Выводы

 

Чтобы схемы на полевых транзисторах имели широкое применение в будущем, они должны иметь преимущество перед существующими интегральными схемами. В основном эти преимущества не будут в характеристиках. Биполярные интегральные схемы с их низким пороговым напряжением, высоким коэффициентом усиления и низким напряжением насыщения превосходят МОП-схемы, если сравнивать по быстродействию и мощности.

Теория работы полевых транзисторов в настоящее время достаточно хорошо разработана и довольно успешно применяется при конструировании цифровых логических схем

Дальнейшее совершенствование полевых транзисторов развивается в следующих направлениях: увеличение быстродействия, уменьшение размеров и потребляемой мощности, применение новых технологических приемов в изготовлении МОП- и КМОП-структур ИМС, увеличение граничной частоты (быстродействия) и мощности, уменьшение собственных шумов и влияния дестабилизирующих факторов приборов дискретного действия, уменьшение разброса и увеличение стабильности всех параметров полевых транзисторов, создание новых конструктивных разновидностей с использованием как кремния, так и других полупроводниковых материалов, принципиально новых приборов на основе использования свойств и эффектов, присущих полевым транзисторам.

Заключение

          В данной работе рассматривался принцип действия полевого транзистора с p-n переходом. Были рассчитаны статические параметры полевого транзистора с общим затвором теоретически и экспериментально. Небольшие расхождения между статическими параметрами, определенными теоретически и экспериментально, связаны с неточностью графоаналитического метода.